Mostrar el registro sencillo del ítem
dc.contributor.author | Gonçalves Marques, Victor | es_ES |
dc.contributor.author | RODRIGO BORT, MIGUEL | es_ES |
dc.contributor.author | Guillem Sánchez, María Salud | es_ES |
dc.contributor.author | Salinet, Joao | es_ES |
dc.date.accessioned | 2021-05-12T03:32:01Z | |
dc.date.available | 2021-05-12T03:32:01Z | |
dc.date.issued | 2020-12 | es_ES |
dc.identifier.issn | 0010-4825 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/166209 | |
dc.description.abstract | [EN] Purpose: Atrial tachycardia (AT), flutter (AFL) and fibrillation (AF) are very common cardiac arrhythmias and are driven by localized sources that can be ablation targets. Non-invasive body surface potential mapping (BSPM) can be useful for early diagnosis and ablation planning. We aimed to characterize and differentiate the arrhythmic mechanisms behind AT, AFL and AF from the BSPM perspective using basic features reflecting their electrophysiology. Methods: 19 simulations of 567-lead BSPMs were used to obtain dominant frequency (DF) maps and estimate the atrial driving frequencies using the highest DF (HDF). Regions with vertical bar DF - HDF vertical bar <= 1Hz were segmented and characterized (size, area); the spatial distribution of the differences |DF -atrial HDF estimate vertical bar was qualitatively analyzed. Phase singularity points (SPs) were detected on maps generated with Hilbert transform after band-pass filtering around the HDF (1Hz). Connected SPs along time (filaments) and their histogram (heatmaps) were used for rotational activity characterization (duration, spatiotemporal stability). Results were reproduced in clinical layouts (252 to 12 leads) and with different rotations and translations of the atria within the torso, and compared with the original 567-lead outcomes using structural similarity index (SSIM) between maps, sensitivity and precision in SP detection and direct feature comparison. Random forest and least-square based algorithms were used to classify the arrhythmias and their mechanisms' location, respectively, based on the obtained features. Results: Frequency and phase analyses revealed distinct behavior between arrhythmias. AT and AFL presented uniform DF maps with low variance, while AF maps were more heterogeneous. Lower differences from the atrial HDF regions correlated with the driver location. Rotational activity was most stable in AFL, followed by AT and AF. Features were robust to lower spatial resolution layouts and modifications in the atrial geometry; DF and heatmaps presented decreasing SSIM along the layouts. The classification of the arrhythmias and their mechanisms' location achieved balanced accuracy of 72.0% and 73.9%, respectively. Conclusion: Non-invasive characterization of AT, AFL and AF based on realistic models highlights intrinsic differences between the arrhythmias, enhancing the BSPM utility as an auxiliary clinical tool. | es_ES |
dc.description.sponsorship | This study was supported in part by grants from Sao Paulo Research Foundation (2017/19775-3), Instituto de Salud Carlos III Research Foundation, Fondo Europeo de Desarrollo Regional FEDER, Spain (PI17/01106), and Generalitat Valenciana, Spain (AICO/2018/26,7 APOSTD/2017, GVA/2018/103). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Computers in Biology and Medicine | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Atrial fibrillation | es_ES |
dc.subject | Atrial tachycardia | es_ES |
dc.subject | Atrial flutter | es_ES |
dc.subject | Non-invasive | es_ES |
dc.subject | Signal processing | es_ES |
dc.subject | Body surface potential mapping | es_ES |
dc.subject.classification | TECNOLOGIA ELECTRONICA | es_ES |
dc.title | Characterization of atrial arrhythmias in body surface potential mapping: A computational study | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.compbiomed.2020.103904 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/FAPESP//2017%2F19775-3/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//APOSTD%2F2017 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/ISCIII//PI17%2F01106/ES/Estratificación y tratamiento de la fibrilación auricular basada en los mecanismos de perpetuación de la arritmia/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//GV%2F2018%2F103/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//AICO%2F2018%2F267/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica | es_ES |
dc.description.bibliographicCitation | Gonçalves Marques, V.; Rodrigo Bort, M.; Guillem Sánchez, MS.; Salinet, J. (2020). Characterization of atrial arrhythmias in body surface potential mapping: A computational study. Computers in Biology and Medicine. 127:1-13. https://doi.org/10.1016/j.compbiomed.2020.103904 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.compbiomed.2020.103904 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 13 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 127 | es_ES |
dc.identifier.pmid | 32928523 | es_ES |
dc.relation.pasarela | S\434572 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Instituto de Salud Carlos III | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Fundação de Amparo à Pesquisa do Estado de São Paulo | es_ES |
dc.description.references | Haïssaguerre, M., Jaïs, P., Shah, D. C., Takahashi, A., Hocini, M., Quiniou, G., … Clémenty, J. (1998). Spontaneous Initiation of Atrial Fibrillation by Ectopic Beats Originating in the Pulmonary Veins. New England Journal of Medicine, 339(10), 659-666. doi:10.1056/nejm199809033391003 | es_ES |
dc.description.references | Atienza, F., Almendral, J., Jalife, J., Zlochiver, S., Ploutz-Snyder, R., Torrecilla, E. G., … Berenfeld, O. (2009). Real-time dominant frequency mapping and ablation of dominant frequency sites in atrial fibrillation with left-to-right frequency gradients predicts long-term maintenance of sinus rhythm. Heart Rhythm, 6(1), 33-40. doi:10.1016/j.hrthm.2008.10.024 | es_ES |
dc.description.references | Narayan, S. M., Krummen, D. E., Shivkumar, K., Clopton, P., Rappel, W.-J., & Miller, J. M. (2012). Treatment of Atrial Fibrillation by the Ablation of Localized Sources. Journal of the American College of Cardiology, 60(7), 628-636. doi:10.1016/j.jacc.2012.05.022 | es_ES |
dc.description.references | Guillem, M. S., Climent, A. M., Rodrigo, M., Fernández-Avilés, F., Atienza, F., & Berenfeld, O. (2016). Presence and stability of rotors in atrial fibrillation: evidence and therapeutic implications. Cardiovascular Research, 109(4), 480-492. doi:10.1093/cvr/cvw011 | es_ES |
dc.description.references | Alday, E. A. P., Colman, M. A., Langley, P., & Zhang, H. (2017). Novel non-invasive algorithm to identify the origins of re-entry and ectopic foci in the atria from 64-lead ECGs: A computational study. PLOS Computational Biology, 13(3), e1005270. doi:10.1371/journal.pcbi.1005270 | es_ES |
dc.description.references | Guillem, M. S., Climent, A. M., Millet, J., Arenal, Á., Fernández-Avilés, F., Jalife, J., … Berenfeld, O. (2013). Noninvasive Localization of Maximal Frequency Sites of Atrial Fibrillation by Body Surface Potential Mapping. Circulation: Arrhythmia and Electrophysiology, 6(2), 294-301. doi:10.1161/circep.112.000167 | es_ES |
dc.description.references | Rodrigo, M., Guillem, M. S., Climent, A. M., Pedrón-Torrecilla, J., Liberos, A., Millet, J., … Berenfeld, O. (2014). Body surface localization of left and right atrial high-frequency rotors in atrial fibrillation patients: A clinical-computational study. Heart Rhythm, 11(9), 1584-1591. doi:10.1016/j.hrthm.2014.05.013 | es_ES |
dc.description.references | Vanheusden, F. J., Chu, G. S., Li, X., Salinet, J., Almeida, T. P., Dastagir, N., … Schlindwein, F. S. (2019). Systematic differences of non-invasive dominant frequency estimation compared to invasive dominant frequency estimation in atrial fibrillation. Computers in Biology and Medicine, 104, 299-309. doi:10.1016/j.compbiomed.2018.11.017 | es_ES |
dc.description.references | Ng, J., Kadish, A. H., & Goldberger, J. J. (2006). Effect of electrogram characteristics on the relationship of dominant frequency to atrial activation rate in atrial fibrillation. Heart Rhythm, 3(11), 1295-1305. doi:10.1016/j.hrthm.2006.07.027 | es_ES |
dc.description.references | Atienza, F., Almendral, J., Ormaetxe, J. M., Moya, Á., Martínez-Alday, J. D., Hernández-Madrid, A., … Jalife, J. (2014). Comparison of Radiofrequency Catheter Ablation of Drivers and Circumferential Pulmonary Vein Isolation in Atrial Fibrillation. Journal of the American College of Cardiology, 64(23), 2455-2467. doi:10.1016/j.jacc.2014.09.053 | es_ES |
dc.description.references | Rodrigo, M., Climent, A. M., Liberos, A., Fernández-Avilés, F., Berenfeld, O., Atienza, F., & Guillem, M. S. (2017). Technical Considerations on Phase Mapping for Identification of Atrial Reentrant Activity in Direct- and Inverse-Computed Electrograms. Circulation: Arrhythmia and Electrophysiology, 10(9). doi:10.1161/circep.117.005008 | es_ES |
dc.description.references | Dössel, O., Krueger, M. W., Weber, F. M., Wilhelms, M., & Seemann, G. (2012). Computational modeling of the human atrial anatomy and electrophysiology. Medical & Biological Engineering & Computing, 50(8), 773-799. doi:10.1007/s11517-012-0924-6 | es_ES |
dc.description.references | Marques, V. G., Rodrigo, M., Guillem, M. S., & Salinet, J. (2020). A robust wavelet-based approach for dominant frequency analysis of atrial fibrillation in body surface signals. Physiological Measurement, 41(7), 075004. doi:10.1088/1361-6579/ab97c1 | es_ES |
dc.description.references | Mallat, S., & Hwang, W. L. (1992). Singularity detection and processing with wavelets. IEEE Transactions on Information Theory, 38(2), 617-643. doi:10.1109/18.119727 | es_ES |
dc.description.references | Vijayakumar, R., Vasireddi, S. K., Cuculich, P. S., Faddis, M. N., & Rudy, Y. (2016). Methodology Considerations in Phase Mapping of Human Cardiac Arrhythmias. Circulation: Arrhythmia and Electrophysiology, 9(11). doi:10.1161/circep.116.004409 | es_ES |
dc.description.references | Everett, T. H., Moorman, J. R., Kok, L.-C., Akar, J. G., & Haines, D. E. (2001). Assessment of Global Atrial Fibrillation Organization to Optimize Timing of Atrial Defibrillation. Circulation, 103(23), 2857-2861. doi:10.1161/01.cir.103.23.2857 | es_ES |
dc.description.references | Haissaguerre, M., Hocini, M., Denis, A., Shah, A. J., Komatsu, Y., Yamashita, S., … Dubois, R. (2014). Driver Domains in Persistent Atrial Fibrillation. Circulation, 130(7), 530-538. doi:10.1161/circulationaha.113.005421 | es_ES |
dc.description.references | Van Oosterom, A., Ihara, Z., Jacquemet, V., & Hoekema, R. (2007). Vectorcardiographic lead systems for the characterization of atrial fibrillation. Journal of Electrocardiology, 40(4), 343.e1-343.e11. doi:10.1016/j.jelectrocard.2006.08.002 | es_ES |
dc.description.references | Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P. (2004). Image Quality Assessment: From Error Visibility to Structural Similarity. IEEE Transactions on Image Processing, 13(4), 600-612. doi:10.1109/tip.2003.819861 | es_ES |
dc.description.references | Rodrigo, M., Climent, A. M., Liberos, A., Fernández-Avilés, F., Berenfeld, O., Atienza, F., & Guillem, M. S. (2017). Highest dominant frequency and rotor positions are robust markers of driver location during noninvasive mapping of atrial fibrillation: A computational study. Heart Rhythm, 14(8), 1224-1233. doi:10.1016/j.hrthm.2017.04.017 | es_ES |
dc.description.references | Rodrigo, M., Climent, A. M., Liberos, A., Fernández-Aviles, F., Atienza, F., Guillem, M. S., & Berenfeld, O. (2017). Minimal configuration of body surface potential mapping for discrimination of left versus right dominant frequencies during atrial fibrillation. Pacing and Clinical Electrophysiology, 40(8), 940-946. doi:10.1111/pace.13133 | es_ES |
dc.description.references | McGillivray, M. F., Cheng, W., Peters, N. S., & Christensen, K. (2018). Machine learning methods for locating re-entrant drivers from electrograms in a model of atrial fibrillation. Royal Society Open Science, 5(4), 172434. doi:10.1098/rsos.172434 | es_ES |
dc.description.references | Cai, W., Chen, Y., Guo, J., Han, B., Shi, Y., Ji, L., … Luo, J. (2020). Accurate detection of atrial fibrillation from 12-lead ECG using deep neural network. Computers in Biology and Medicine, 116, 103378. doi:10.1016/j.compbiomed.2019.103378 | es_ES |
dc.description.references | Yıldırım, Ö., Pławiak, P., Tan, R.-S., & Acharya, U. R. (2018). Arrhythmia detection using deep convolutional neural network with long duration ECG signals. Computers in Biology and Medicine, 102, 411-420. doi:10.1016/j.compbiomed.2018.09.009 | es_ES |
dc.description.references | Parvaneh, S., Rubin, J., Babaeizadeh, S., & Xu-Wilson, M. (2019). Cardiac arrhythmia detection using deep learning: A review. Journal of Electrocardiology, 57, S70-S74. doi:10.1016/j.jelectrocard.2019.08.004 | es_ES |
dc.description.references | Kumar Sahoo, S., Wenmiao Lu, Teddy, S. D., Desok Kim, & Mengling Feng. (2011). Detection of Atrial fibrillation from non-episodic ECG data: A review of methods. 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. doi:10.1109/iembs.2011.6091237 | es_ES |
dc.description.references | NG, J., & GOLDBERGER, J. J. (2007). Understanding and Interpreting Dominant Frequency Analysis of AF Electrograms. Journal of Cardiovascular Electrophysiology, 18(6), 680-685. doi:10.1111/j.1540-8167.2007.00832.x | es_ES |
dc.description.references | Sanders, P., Berenfeld, O., Hocini, M., Jaïs, P., Vaidyanathan, R., Hsu, L.-F., … Haïssaguerre, M. (2005). Spectral Analysis Identifies Sites of High-Frequency Activity Maintaining Atrial Fibrillation in Humans. Circulation, 112(6), 789-797. doi:10.1161/circulationaha.104.517011 | es_ES |