- -

Characterization of atrial arrhythmias in body surface potential mapping: A computational study

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Characterization of atrial arrhythmias in body surface potential mapping: A computational study

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Gonçalves Marques, Victor es_ES
dc.contributor.author RODRIGO BORT, MIGUEL es_ES
dc.contributor.author Guillem Sánchez, María Salud es_ES
dc.contributor.author Salinet, Joao es_ES
dc.date.accessioned 2021-05-12T03:32:01Z
dc.date.available 2021-05-12T03:32:01Z
dc.date.issued 2020-12 es_ES
dc.identifier.issn 0010-4825 es_ES
dc.identifier.uri http://hdl.handle.net/10251/166209
dc.description.abstract [EN] Purpose: Atrial tachycardia (AT), flutter (AFL) and fibrillation (AF) are very common cardiac arrhythmias and are driven by localized sources that can be ablation targets. Non-invasive body surface potential mapping (BSPM) can be useful for early diagnosis and ablation planning. We aimed to characterize and differentiate the arrhythmic mechanisms behind AT, AFL and AF from the BSPM perspective using basic features reflecting their electrophysiology. Methods: 19 simulations of 567-lead BSPMs were used to obtain dominant frequency (DF) maps and estimate the atrial driving frequencies using the highest DF (HDF). Regions with vertical bar DF - HDF vertical bar <= 1Hz were segmented and characterized (size, area); the spatial distribution of the differences |DF -atrial HDF estimate vertical bar was qualitatively analyzed. Phase singularity points (SPs) were detected on maps generated with Hilbert transform after band-pass filtering around the HDF (1Hz). Connected SPs along time (filaments) and their histogram (heatmaps) were used for rotational activity characterization (duration, spatiotemporal stability). Results were reproduced in clinical layouts (252 to 12 leads) and with different rotations and translations of the atria within the torso, and compared with the original 567-lead outcomes using structural similarity index (SSIM) between maps, sensitivity and precision in SP detection and direct feature comparison. Random forest and least-square based algorithms were used to classify the arrhythmias and their mechanisms' location, respectively, based on the obtained features. Results: Frequency and phase analyses revealed distinct behavior between arrhythmias. AT and AFL presented uniform DF maps with low variance, while AF maps were more heterogeneous. Lower differences from the atrial HDF regions correlated with the driver location. Rotational activity was most stable in AFL, followed by AT and AF. Features were robust to lower spatial resolution layouts and modifications in the atrial geometry; DF and heatmaps presented decreasing SSIM along the layouts. The classification of the arrhythmias and their mechanisms' location achieved balanced accuracy of 72.0% and 73.9%, respectively. Conclusion: Non-invasive characterization of AT, AFL and AF based on realistic models highlights intrinsic differences between the arrhythmias, enhancing the BSPM utility as an auxiliary clinical tool. es_ES
dc.description.sponsorship This study was supported in part by grants from Sao Paulo Research Foundation (2017/19775-3), Instituto de Salud Carlos III Research Foundation, Fondo Europeo de Desarrollo Regional FEDER, Spain (PI17/01106), and Generalitat Valenciana, Spain (AICO/2018/26,7 APOSTD/2017, GVA/2018/103). es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Computers in Biology and Medicine es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Atrial fibrillation es_ES
dc.subject Atrial tachycardia es_ES
dc.subject Atrial flutter es_ES
dc.subject Non-invasive es_ES
dc.subject Signal processing es_ES
dc.subject Body surface potential mapping es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Characterization of atrial arrhythmias in body surface potential mapping: A computational study es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.compbiomed.2020.103904 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FAPESP//2017%2F19775-3/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//APOSTD%2F2017 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ISCIII//PI17%2F01106/ES/Estratificación y tratamiento de la fibrilación auricular basada en los mecanismos de perpetuación de la arritmia/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//GV%2F2018%2F103/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//AICO%2F2018%2F267/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.description.bibliographicCitation Gonçalves Marques, V.; Rodrigo Bort, M.; Guillem Sánchez, MS.; Salinet, J. (2020). Characterization of atrial arrhythmias in body surface potential mapping: A computational study. Computers in Biology and Medicine. 127:1-13. https://doi.org/10.1016/j.compbiomed.2020.103904 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.compbiomed.2020.103904 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 13 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 127 es_ES
dc.identifier.pmid 32928523 es_ES
dc.relation.pasarela S\434572 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Instituto de Salud Carlos III es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Fundação de Amparo à Pesquisa do Estado de São Paulo es_ES
dc.description.references Haïssaguerre, M., Jaïs, P., Shah, D. C., Takahashi, A., Hocini, M., Quiniou, G., … Clémenty, J. (1998). Spontaneous Initiation of Atrial Fibrillation by Ectopic Beats Originating in the Pulmonary Veins. New England Journal of Medicine, 339(10), 659-666. doi:10.1056/nejm199809033391003 es_ES
dc.description.references Atienza, F., Almendral, J., Jalife, J., Zlochiver, S., Ploutz-Snyder, R., Torrecilla, E. G., … Berenfeld, O. (2009). Real-time dominant frequency mapping and ablation of dominant frequency sites in atrial fibrillation with left-to-right frequency gradients predicts long-term maintenance of sinus rhythm. Heart Rhythm, 6(1), 33-40. doi:10.1016/j.hrthm.2008.10.024 es_ES
dc.description.references Narayan, S. M., Krummen, D. E., Shivkumar, K., Clopton, P., Rappel, W.-J., & Miller, J. M. (2012). Treatment of Atrial Fibrillation by the Ablation of Localized Sources. Journal of the American College of Cardiology, 60(7), 628-636. doi:10.1016/j.jacc.2012.05.022 es_ES
dc.description.references Guillem, M. S., Climent, A. M., Rodrigo, M., Fernández-Avilés, F., Atienza, F., & Berenfeld, O. (2016). Presence and stability of rotors in atrial fibrillation: evidence and therapeutic implications. Cardiovascular Research, 109(4), 480-492. doi:10.1093/cvr/cvw011 es_ES
dc.description.references Alday, E. A. P., Colman, M. A., Langley, P., & Zhang, H. (2017). Novel non-invasive algorithm to identify the origins of re-entry and ectopic foci in the atria from 64-lead ECGs: A computational study. PLOS Computational Biology, 13(3), e1005270. doi:10.1371/journal.pcbi.1005270 es_ES
dc.description.references Guillem, M. S., Climent, A. M., Millet, J., Arenal, Á., Fernández-Avilés, F., Jalife, J., … Berenfeld, O. (2013). Noninvasive Localization of Maximal Frequency Sites of Atrial Fibrillation by Body Surface Potential Mapping. Circulation: Arrhythmia and Electrophysiology, 6(2), 294-301. doi:10.1161/circep.112.000167 es_ES
dc.description.references Rodrigo, M., Guillem, M. S., Climent, A. M., Pedrón-Torrecilla, J., Liberos, A., Millet, J., … Berenfeld, O. (2014). Body surface localization of left and right atrial high-frequency rotors in atrial fibrillation patients: A clinical-computational study. Heart Rhythm, 11(9), 1584-1591. doi:10.1016/j.hrthm.2014.05.013 es_ES
dc.description.references Vanheusden, F. J., Chu, G. S., Li, X., Salinet, J., Almeida, T. P., Dastagir, N., … Schlindwein, F. S. (2019). Systematic differences of non-invasive dominant frequency estimation compared to invasive dominant frequency estimation in atrial fibrillation. Computers in Biology and Medicine, 104, 299-309. doi:10.1016/j.compbiomed.2018.11.017 es_ES
dc.description.references Ng, J., Kadish, A. H., & Goldberger, J. J. (2006). Effect of electrogram characteristics on the relationship of dominant frequency to atrial activation rate in atrial fibrillation. Heart Rhythm, 3(11), 1295-1305. doi:10.1016/j.hrthm.2006.07.027 es_ES
dc.description.references Atienza, F., Almendral, J., Ormaetxe, J. M., Moya, Á., Martínez-Alday, J. D., Hernández-Madrid, A., … Jalife, J. (2014). Comparison of Radiofrequency Catheter Ablation of Drivers and Circumferential Pulmonary Vein Isolation in Atrial Fibrillation. Journal of the American College of Cardiology, 64(23), 2455-2467. doi:10.1016/j.jacc.2014.09.053 es_ES
dc.description.references Rodrigo, M., Climent, A. M., Liberos, A., Fernández-Avilés, F., Berenfeld, O., Atienza, F., & Guillem, M. S. (2017). Technical Considerations on Phase Mapping for Identification of Atrial Reentrant Activity in Direct- and Inverse-Computed Electrograms. Circulation: Arrhythmia and Electrophysiology, 10(9). doi:10.1161/circep.117.005008 es_ES
dc.description.references Dössel, O., Krueger, M. W., Weber, F. M., Wilhelms, M., & Seemann, G. (2012). Computational modeling of the human atrial anatomy and electrophysiology. Medical & Biological Engineering & Computing, 50(8), 773-799. doi:10.1007/s11517-012-0924-6 es_ES
dc.description.references Marques, V. G., Rodrigo, M., Guillem, M. S., & Salinet, J. (2020). A robust wavelet-based approach for dominant frequency analysis of atrial fibrillation in body surface signals. Physiological Measurement, 41(7), 075004. doi:10.1088/1361-6579/ab97c1 es_ES
dc.description.references Mallat, S., & Hwang, W. L. (1992). Singularity detection and processing with wavelets. IEEE Transactions on Information Theory, 38(2), 617-643. doi:10.1109/18.119727 es_ES
dc.description.references Vijayakumar, R., Vasireddi, S. K., Cuculich, P. S., Faddis, M. N., & Rudy, Y. (2016). Methodology Considerations in Phase Mapping of Human Cardiac Arrhythmias. Circulation: Arrhythmia and Electrophysiology, 9(11). doi:10.1161/circep.116.004409 es_ES
dc.description.references Everett, T. H., Moorman, J. R., Kok, L.-C., Akar, J. G., & Haines, D. E. (2001). Assessment of Global Atrial Fibrillation Organization to Optimize Timing of Atrial Defibrillation. Circulation, 103(23), 2857-2861. doi:10.1161/01.cir.103.23.2857 es_ES
dc.description.references Haissaguerre, M., Hocini, M., Denis, A., Shah, A. J., Komatsu, Y., Yamashita, S., … Dubois, R. (2014). Driver Domains in Persistent Atrial Fibrillation. Circulation, 130(7), 530-538. doi:10.1161/circulationaha.113.005421 es_ES
dc.description.references Van Oosterom, A., Ihara, Z., Jacquemet, V., & Hoekema, R. (2007). Vectorcardiographic lead systems for the characterization of atrial fibrillation. Journal of Electrocardiology, 40(4), 343.e1-343.e11. doi:10.1016/j.jelectrocard.2006.08.002 es_ES
dc.description.references Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P. (2004). Image Quality Assessment: From Error Visibility to Structural Similarity. IEEE Transactions on Image Processing, 13(4), 600-612. doi:10.1109/tip.2003.819861 es_ES
dc.description.references Rodrigo, M., Climent, A. M., Liberos, A., Fernández-Avilés, F., Berenfeld, O., Atienza, F., & Guillem, M. S. (2017). Highest dominant frequency and rotor positions are robust markers of driver location during noninvasive mapping of atrial fibrillation: A computational study. Heart Rhythm, 14(8), 1224-1233. doi:10.1016/j.hrthm.2017.04.017 es_ES
dc.description.references Rodrigo, M., Climent, A. M., Liberos, A., Fernández-Aviles, F., Atienza, F., Guillem, M. S., & Berenfeld, O. (2017). Minimal configuration of body surface potential mapping for discrimination of left versus right dominant frequencies during atrial fibrillation. Pacing and Clinical Electrophysiology, 40(8), 940-946. doi:10.1111/pace.13133 es_ES
dc.description.references McGillivray, M. F., Cheng, W., Peters, N. S., & Christensen, K. (2018). Machine learning methods for locating re-entrant drivers from electrograms in a model of atrial fibrillation. Royal Society Open Science, 5(4), 172434. doi:10.1098/rsos.172434 es_ES
dc.description.references Cai, W., Chen, Y., Guo, J., Han, B., Shi, Y., Ji, L., … Luo, J. (2020). Accurate detection of atrial fibrillation from 12-lead ECG using deep neural network. Computers in Biology and Medicine, 116, 103378. doi:10.1016/j.compbiomed.2019.103378 es_ES
dc.description.references Yıldırım, Ö., Pławiak, P., Tan, R.-S., & Acharya, U. R. (2018). Arrhythmia detection using deep convolutional neural network with long duration ECG signals. Computers in Biology and Medicine, 102, 411-420. doi:10.1016/j.compbiomed.2018.09.009 es_ES
dc.description.references Parvaneh, S., Rubin, J., Babaeizadeh, S., & Xu-Wilson, M. (2019). Cardiac arrhythmia detection using deep learning: A review. Journal of Electrocardiology, 57, S70-S74. doi:10.1016/j.jelectrocard.2019.08.004 es_ES
dc.description.references Kumar Sahoo, S., Wenmiao Lu, Teddy, S. D., Desok Kim, & Mengling Feng. (2011). Detection of Atrial fibrillation from non-episodic ECG data: A review of methods. 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. doi:10.1109/iembs.2011.6091237 es_ES
dc.description.references NG, J., & GOLDBERGER, J. J. (2007). Understanding and Interpreting Dominant Frequency Analysis of AF Electrograms. Journal of Cardiovascular Electrophysiology, 18(6), 680-685. doi:10.1111/j.1540-8167.2007.00832.x es_ES
dc.description.references Sanders, P., Berenfeld, O., Hocini, M., Jaïs, P., Vaidyanathan, R., Hsu, L.-F., … Haïssaguerre, M. (2005). Spectral Analysis Identifies Sites of High-Frequency Activity Maintaining Atrial Fibrillation in Humans. Circulation, 112(6), 789-797. doi:10.1161/circulationaha.104.517011 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem