- -

Electrical monitoring under transient conditions: a new paradigm in electric motors predictive maintenance

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Electrical monitoring under transient conditions: a new paradigm in electric motors predictive maintenance

Show full item record

Antonino Daviu, JA. (2020). Electrical monitoring under transient conditions: a new paradigm in electric motors predictive maintenance. Applied Sciences. 10(17):1-16. https://doi.org/10.3390/app10176137

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/166213

Files in this item

Item Metadata

Title: Electrical monitoring under transient conditions: a new paradigm in electric motors predictive maintenance
Author: Antonino Daviu, José Alfonso
UPV Unit: Universitat Politècnica de València. Departamento de Ingeniería Eléctrica - Departament d'Enginyeria Elèctrica
Issued date:
Abstract:
[EN] Electric motors condition monitoring is a field of paramount importance for industry. In recent decades, there has been a continuous effort to investigate on new techniques and methods that are able to determine the ...[+]
Subjects: Induction motor , Fault diagnosis , Electrical monitoring , Transient analysis , Rotor , Reliability , Predictive maintenance , Wavelet transforms , Current , Stray flux
Copyrigths: Reconocimiento (by)
Source:
Applied Sciences. (eissn: 2076-3417 )
DOI: 10.3390/app10176137
Publisher:
MDPI AG
Publisher version: https://doi.org/10.3390/app10176137
Project ID:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-095747-B-I00/ES/TECNOLOGIAS AVANZADAS BASADAS EN EL ANALISIS DEL FLUJO DE DISPERSION EN REGIMEN TRANSITORIO PARA EL DIAGNOSTICO PRECOZ DE ANOMALIAS ELECTROMECANICAS EN MOTORES ELECTRICOS/
Thanks:
This research was funded by by the Spanish 'Ministerio de Ciencia Innovacion y Universidades' and FEDER program in the framework of the 'Proyectos de I + D de Generacion de Conocimiento del Programa Estatal de Generacion ...[+]
Type: Artículo

References

Electric Motor Engineeringhttps://www.electricmotorengineering.com/a-global-electric-motor-market-overview/

Antonino-Daviu, J., Fuster-Roig, V., Park, S., Park, Y., Choi, H., Park, J., & Lee, S. B. (2020). Electrical Monitoring of Damper Bar Condition in Salient-Pole Synchronous Motors Without Motor Disassembly. IEEE Transactions on Industry Applications, 56(2), 1423-1431. doi:10.1109/tia.2020.2965903

Garcia, M., Panagiotou, P. A., Antonino-Daviu, J. A., & Gyftakis, K. N. (2019). Efficiency Assessment of Induction Motors Operating Under Different Faulty Conditions. IEEE Transactions on Industrial Electronics, 66(10), 8072-8081. doi:10.1109/tie.2018.2885719 [+]
Electric Motor Engineeringhttps://www.electricmotorengineering.com/a-global-electric-motor-market-overview/

Antonino-Daviu, J., Fuster-Roig, V., Park, S., Park, Y., Choi, H., Park, J., & Lee, S. B. (2020). Electrical Monitoring of Damper Bar Condition in Salient-Pole Synchronous Motors Without Motor Disassembly. IEEE Transactions on Industry Applications, 56(2), 1423-1431. doi:10.1109/tia.2020.2965903

Garcia, M., Panagiotou, P. A., Antonino-Daviu, J. A., & Gyftakis, K. N. (2019). Efficiency Assessment of Induction Motors Operating Under Different Faulty Conditions. IEEE Transactions on Industrial Electronics, 66(10), 8072-8081. doi:10.1109/tie.2018.2885719

Nandi, S., Toliyat, H. A., & Li, X. (2005). Condition Monitoring and Fault Diagnosis of Electrical Motors—A Review. IEEE Transactions on Energy Conversion, 20(4), 719-729. doi:10.1109/tec.2005.847955

Antonino-Daviu, J. A., Quijano-Lopez, A., Rubbiolo, M., & Climente-Alarcon, V. (2018). Advanced Analysis of Motor Currents for the Diagnosis of the Rotor Condition in Electric Motors Operating in Mining Facilities. IEEE Transactions on Industry Applications, 54(4), 3934-3942. doi:10.1109/tia.2018.2818671

Antonino-Daviu, J. A., Pons-Llinares, J., & Lee, S. B. (2016). Advanced Rotor Fault Diagnosis for Medium-Voltage Induction Motors Via Continuous Transforms. IEEE Transactions on Industry Applications, 52(5), 4503-4509. doi:10.1109/tia.2016.2582720

Antonino-Daviu, J. A., Riera-Guasp, M., Folch, J. R., & Palomares, M. P. M. (2006). Validation of a new method for the diagnosis of rotor bar failures via wavelet transform in industrial induction machines. IEEE Transactions on Industry Applications, 42(4), 990-996. doi:10.1109/tia.2006.876082

Schoen, R. R., & Habetler, T. G. (1997). Evaluation and implementation of a system to eliminate arbitrary load effects in current-based monitoring of induction machines. IEEE Transactions on Industry Applications, 33(6), 1571-1577. doi:10.1109/28.649970

Lee, S., Hong, J., Lee, S. B., Wiedenbrug, E. J., Teska, M., & Kim, H. (2013). Evaluation of the Influence of Rotor Axial Air Ducts on Condition Monitoring of Induction Motors. IEEE Transactions on Industry Applications, 49(5), 2024-2033. doi:10.1109/tia.2013.2259132

Yang, C., Kang, T.-J., Hyun, D., Lee, S. B., Antonino-Daviu, J. A., & Pons-Llinares, J. (2014). Reliable Detection of Induction Motor Rotor Faults Under the Rotor Axial Air Duct Influence. IEEE Transactions on Industry Applications, 50(4), 2493-2502. doi:10.1109/tia.2013.2297448

Park, Y., Jeong, M., Lee, S. B., Antonino-Daviu, J. A., & Teska, M. (2017). Influence of Blade Pass Frequency Vibrations on MCSA-Based Rotor Fault Detection of Induction Motors. IEEE Transactions on Industry Applications, 53(3), 2049-2058. doi:10.1109/tia.2017.2672526

Riera-Guasp, M., Cabanas, M. F., Antonino-Daviu, J. A., Pineda-Sanchez, M., & Garcia, C. H. R. (2010). Influence of Nonconsecutive Bar Breakages in Motor Current Signature Analysis for the Diagnosis of Rotor Faults in Induction Motors. IEEE Transactions on Energy Conversion, 25(1), 80-89. doi:10.1109/tec.2009.2032622

Antonino-Daviu, J., Riera-Guasp, M., Pons-Llinares, J., Park, J., Lee, S. B., Yoo, J., & Kral, C. (2012). Detection of Broken Outer-Cage Bars for Double-Cage Induction Motors Under the Startup Transient. IEEE Transactions on Industry Applications, 48(5), 1539-1548. doi:10.1109/tia.2012.2210173

Antonino-Daviu, J., Jover, P., Riera, M., Arkkio, A., & Roger-Folch, J. (2007). DWT analysis of numerical and experimental data for the diagnosis of dynamic eccentricities in induction motors. Mechanical Systems and Signal Processing, 21(6), 2575-2589. doi:10.1016/j.ymssp.2007.01.008

Picot, A., Fournier, E., Regnier, J., TientcheuYamdeu, M., Andrejak, J.-M., & Maussion, P. (2017). Statistic-Based Method to Monitor Belt Transmission Looseness Through Motor Phase Currents. IEEE Transactions on Industrial Informatics, 13(3), 1332-1340. doi:10.1109/tii.2017.2661317

Corral-Hernandez, J. A., Antonino-Daviu, J., Pons-Llinares, J., Climente-Alarcon, V., & Frances-Galiana, V. (2015). Transient-Based Rotor Cage Assessment in Induction Motors Operating With Soft Starters. IEEE Transactions on Industry Applications, 51(5), 3734-3742. doi:10.1109/tia.2015.2427271

Pons-Llinares, J., Antonino-Daviu, J., Roger-Folch, J., Moríñigo-Sotelo, D., & Duque-Pérez, O. (2014). Mixed eccentricity diagnosis in Inverter-Fed Induction Motors via the Adaptive Slope Transform of transient stator currents. Mechanical Systems and Signal Processing, 48(1-2), 423-435. doi:10.1016/j.ymssp.2014.02.012

Henao, H., Demian, C., & Capolino, G.-A. (2003). A frequency-domain detection of stator winding faults in induction machines using an external flux sensor. IEEE Transactions on Industry Applications, 39(5), 1272-1279. doi:10.1109/tia.2003.816531

Ramirez-Nunez, J. A., Antonino-Daviu, J. A., Climente-Alarcon, V., Quijano-Lopez, A., Razik, H., Osornio-Rios, R. A., & Romero-Troncoso, R. de J. (2018). Evaluation of the Detectability of Electromechanical Faults in Induction Motors Via Transient Analysis of the Stray Flux. IEEE Transactions on Industry Applications, 54(5), 4324-4332. doi:10.1109/tia.2018.2843371

Park, Y., Choi, H., Shin, J., Park, J., Lee, S. B., & Jo, H. (2020). Airgap Flux Based Detection and Classification of Induction Motor Rotor and Load Defects During the Starting Transient. IEEE Transactions on Industrial Electronics, 67(12), 10075-10084. doi:10.1109/tie.2019.2962470

Gyftakis, K. N., Panagiotou, P. A., & Lee, S. B. (2020). Generation of Mechanical Frequency Related Harmonics in the Stray Flux Spectra of Induction Motors Suffering From Rotor Electrical Faults. IEEE Transactions on Industry Applications, 56(5), 4796-4803. doi:10.1109/tia.2020.3002975

Park, Y., Yang, C., Kim, J., Kim, H., Lee, S. B., Gyftakis, K. N., … Capolino, G.-A. (2019). Stray Flux Monitoring for Reliable Detection of Rotor Faults Under the Influence of Rotor Axial Air Ducts. IEEE Transactions on Industrial Electronics, 66(10), 7561-7570. doi:10.1109/tie.2018.2880670

ABB Ability Smart Sensor for Motorshttps://new.abb.com/motors-generators/service/advanced-services/smart-sensor/smart-sensor-for-motors

WEG Motor Scan—Whitepaperhttps://www.weg.net/wegmotorscan/en

Ceban, A., Pusca, R., & Romary, R. (2012). Study of Rotor Faults in Induction Motors Using External Magnetic Field Analysis. IEEE Transactions on Industrial Electronics, 59(5), 2082-2093. doi:10.1109/tie.2011.2163285

ISHKOVA, I. (2016). Detection and classification of faults in induction motor by means of motor current signature analysis and stray flux monitoring. PRZEGLĄD ELEKTROTECHNICZNY, 1(4), 168-172. doi:10.15199/48.2016.04.36

Pons-Llinares, J., Antonino-Daviu, J. A., Riera-Guasp, M., Bin Lee, S., Kang, T., & Yang, C. (2015). Advanced Induction Motor Rotor Fault Diagnosis Via Continuous and Discrete Time–Frequency Tools. IEEE Transactions on Industrial Electronics, 62(3), 1791-1802. doi:10.1109/tie.2014.2355816

Antonino-Daviu, J., Quijano-Lopez, A., Climente-Alarcon, V., & Garin-Abellan, C. (2017). Reliable Detection of Rotor Winding Asymmetries in Wound Rotor Induction Motors via Integral Current Analysis. IEEE Transactions on Industry Applications, 53(3), 2040-2048. doi:10.1109/tia.2017.2672524

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record