- -

Electrical monitoring under transient conditions: a new paradigm in electric motors predictive maintenance

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Electrical monitoring under transient conditions: a new paradigm in electric motors predictive maintenance

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Antonino Daviu, José Alfonso es_ES
dc.date.accessioned 2021-05-12T03:32:10Z
dc.date.available 2021-05-12T03:32:10Z
dc.date.issued 2020-09 es_ES
dc.identifier.uri http://hdl.handle.net/10251/166213
dc.description.abstract [EN] Electric motors condition monitoring is a field of paramount importance for industry. In recent decades, there has been a continuous effort to investigate on new techniques and methods that are able to determine the health of these machines with high accuracy and reliability. Classical methods based on the analysis of diverse machine quantities under stationary condition are being replaced by modern methodologies that are adapted to any operation regime of the machine (including transients). These new methods (especially those based on motor startup signal monitoring), that imply the use of advanced signal processing tools, have shown a great potential and have provided spectacular advantages versus conventional approaches enabling, among other facts, a much more reliable determination of the machine health. This paper reviews the background of this recent condition monitoring trend and shows the advantages of this new approach, with regards to its application to the analysis of electrical quantities. Examples referred to its application to real motors operating in industry are included, proving the huge potential of the transient-based approach and its benefits versus conventional methods. es_ES
dc.description.sponsorship This research was funded by by the Spanish 'Ministerio de Ciencia Innovacion y Universidades' and FEDER program in the framework of the 'Proyectos de I + D de Generacion de Conocimiento del Programa Estatal de Generacion de Conocimiento y Fortalecimiento Cientifico y Tecnologico del Sistema de I + D + i, Subprograma Estatal de Generacion de Conocimiento' (ref: PGC2018-095747-B-I00). es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Applied Sciences es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Induction motor es_ES
dc.subject Fault diagnosis es_ES
dc.subject Electrical monitoring es_ES
dc.subject Transient analysis es_ES
dc.subject Rotor es_ES
dc.subject Reliability es_ES
dc.subject Predictive maintenance es_ES
dc.subject Wavelet transforms es_ES
dc.subject Current es_ES
dc.subject Stray flux es_ES
dc.subject.classification INGENIERIA ELECTRICA es_ES
dc.title Electrical monitoring under transient conditions: a new paradigm in electric motors predictive maintenance es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/app10176137 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-095747-B-I00/ES/TECNOLOGIAS AVANZADAS BASADAS EN EL ANALISIS DEL FLUJO DE DISPERSION EN REGIMEN TRANSITORIO PARA EL DIAGNOSTICO PRECOZ DE ANOMALIAS ELECTROMECANICAS EN MOTORES ELECTRICOS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Eléctrica - Departament d'Enginyeria Elèctrica es_ES
dc.description.bibliographicCitation Antonino Daviu, JA. (2020). Electrical monitoring under transient conditions: a new paradigm in electric motors predictive maintenance. Applied Sciences. 10(17):1-16. https://doi.org/10.3390/app10176137 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/app10176137 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 16 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 10 es_ES
dc.description.issue 17 es_ES
dc.identifier.eissn 2076-3417 es_ES
dc.relation.pasarela S\417285 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.description.references Electric Motor Engineeringhttps://www.electricmotorengineering.com/a-global-electric-motor-market-overview/ es_ES
dc.description.references Antonino-Daviu, J., Fuster-Roig, V., Park, S., Park, Y., Choi, H., Park, J., & Lee, S. B. (2020). Electrical Monitoring of Damper Bar Condition in Salient-Pole Synchronous Motors Without Motor Disassembly. IEEE Transactions on Industry Applications, 56(2), 1423-1431. doi:10.1109/tia.2020.2965903 es_ES
dc.description.references Garcia, M., Panagiotou, P. A., Antonino-Daviu, J. A., & Gyftakis, K. N. (2019). Efficiency Assessment of Induction Motors Operating Under Different Faulty Conditions. IEEE Transactions on Industrial Electronics, 66(10), 8072-8081. doi:10.1109/tie.2018.2885719 es_ES
dc.description.references Nandi, S., Toliyat, H. A., & Li, X. (2005). Condition Monitoring and Fault Diagnosis of Electrical Motors—A Review. IEEE Transactions on Energy Conversion, 20(4), 719-729. doi:10.1109/tec.2005.847955 es_ES
dc.description.references Antonino-Daviu, J. A., Quijano-Lopez, A., Rubbiolo, M., & Climente-Alarcon, V. (2018). Advanced Analysis of Motor Currents for the Diagnosis of the Rotor Condition in Electric Motors Operating in Mining Facilities. IEEE Transactions on Industry Applications, 54(4), 3934-3942. doi:10.1109/tia.2018.2818671 es_ES
dc.description.references Antonino-Daviu, J. A., Pons-Llinares, J., & Lee, S. B. (2016). Advanced Rotor Fault Diagnosis for Medium-Voltage Induction Motors Via Continuous Transforms. IEEE Transactions on Industry Applications, 52(5), 4503-4509. doi:10.1109/tia.2016.2582720 es_ES
dc.description.references Antonino-Daviu, J. A., Riera-Guasp, M., Folch, J. R., & Palomares, M. P. M. (2006). Validation of a new method for the diagnosis of rotor bar failures via wavelet transform in industrial induction machines. IEEE Transactions on Industry Applications, 42(4), 990-996. doi:10.1109/tia.2006.876082 es_ES
dc.description.references Schoen, R. R., & Habetler, T. G. (1997). Evaluation and implementation of a system to eliminate arbitrary load effects in current-based monitoring of induction machines. IEEE Transactions on Industry Applications, 33(6), 1571-1577. doi:10.1109/28.649970 es_ES
dc.description.references Lee, S., Hong, J., Lee, S. B., Wiedenbrug, E. J., Teska, M., & Kim, H. (2013). Evaluation of the Influence of Rotor Axial Air Ducts on Condition Monitoring of Induction Motors. IEEE Transactions on Industry Applications, 49(5), 2024-2033. doi:10.1109/tia.2013.2259132 es_ES
dc.description.references Yang, C., Kang, T.-J., Hyun, D., Lee, S. B., Antonino-Daviu, J. A., & Pons-Llinares, J. (2014). Reliable Detection of Induction Motor Rotor Faults Under the Rotor Axial Air Duct Influence. IEEE Transactions on Industry Applications, 50(4), 2493-2502. doi:10.1109/tia.2013.2297448 es_ES
dc.description.references Park, Y., Jeong, M., Lee, S. B., Antonino-Daviu, J. A., & Teska, M. (2017). Influence of Blade Pass Frequency Vibrations on MCSA-Based Rotor Fault Detection of Induction Motors. IEEE Transactions on Industry Applications, 53(3), 2049-2058. doi:10.1109/tia.2017.2672526 es_ES
dc.description.references Riera-Guasp, M., Cabanas, M. F., Antonino-Daviu, J. A., Pineda-Sanchez, M., & Garcia, C. H. R. (2010). Influence of Nonconsecutive Bar Breakages in Motor Current Signature Analysis for the Diagnosis of Rotor Faults in Induction Motors. IEEE Transactions on Energy Conversion, 25(1), 80-89. doi:10.1109/tec.2009.2032622 es_ES
dc.description.references Antonino-Daviu, J., Riera-Guasp, M., Pons-Llinares, J., Park, J., Lee, S. B., Yoo, J., & Kral, C. (2012). Detection of Broken Outer-Cage Bars for Double-Cage Induction Motors Under the Startup Transient. IEEE Transactions on Industry Applications, 48(5), 1539-1548. doi:10.1109/tia.2012.2210173 es_ES
dc.description.references Antonino-Daviu, J., Jover, P., Riera, M., Arkkio, A., & Roger-Folch, J. (2007). DWT analysis of numerical and experimental data for the diagnosis of dynamic eccentricities in induction motors. Mechanical Systems and Signal Processing, 21(6), 2575-2589. doi:10.1016/j.ymssp.2007.01.008 es_ES
dc.description.references Picot, A., Fournier, E., Regnier, J., TientcheuYamdeu, M., Andrejak, J.-M., & Maussion, P. (2017). Statistic-Based Method to Monitor Belt Transmission Looseness Through Motor Phase Currents. IEEE Transactions on Industrial Informatics, 13(3), 1332-1340. doi:10.1109/tii.2017.2661317 es_ES
dc.description.references Corral-Hernandez, J. A., Antonino-Daviu, J., Pons-Llinares, J., Climente-Alarcon, V., & Frances-Galiana, V. (2015). Transient-Based Rotor Cage Assessment in Induction Motors Operating With Soft Starters. IEEE Transactions on Industry Applications, 51(5), 3734-3742. doi:10.1109/tia.2015.2427271 es_ES
dc.description.references Pons-Llinares, J., Antonino-Daviu, J., Roger-Folch, J., Moríñigo-Sotelo, D., & Duque-Pérez, O. (2014). Mixed eccentricity diagnosis in Inverter-Fed Induction Motors via the Adaptive Slope Transform of transient stator currents. Mechanical Systems and Signal Processing, 48(1-2), 423-435. doi:10.1016/j.ymssp.2014.02.012 es_ES
dc.description.references Henao, H., Demian, C., & Capolino, G.-A. (2003). A frequency-domain detection of stator winding faults in induction machines using an external flux sensor. IEEE Transactions on Industry Applications, 39(5), 1272-1279. doi:10.1109/tia.2003.816531 es_ES
dc.description.references Ramirez-Nunez, J. A., Antonino-Daviu, J. A., Climente-Alarcon, V., Quijano-Lopez, A., Razik, H., Osornio-Rios, R. A., & Romero-Troncoso, R. de J. (2018). Evaluation of the Detectability of Electromechanical Faults in Induction Motors Via Transient Analysis of the Stray Flux. IEEE Transactions on Industry Applications, 54(5), 4324-4332. doi:10.1109/tia.2018.2843371 es_ES
dc.description.references Park, Y., Choi, H., Shin, J., Park, J., Lee, S. B., & Jo, H. (2020). Airgap Flux Based Detection and Classification of Induction Motor Rotor and Load Defects During the Starting Transient. IEEE Transactions on Industrial Electronics, 67(12), 10075-10084. doi:10.1109/tie.2019.2962470 es_ES
dc.description.references Gyftakis, K. N., Panagiotou, P. A., & Lee, S. B. (2020). Generation of Mechanical Frequency Related Harmonics in the Stray Flux Spectra of Induction Motors Suffering From Rotor Electrical Faults. IEEE Transactions on Industry Applications, 56(5), 4796-4803. doi:10.1109/tia.2020.3002975 es_ES
dc.description.references Park, Y., Yang, C., Kim, J., Kim, H., Lee, S. B., Gyftakis, K. N., … Capolino, G.-A. (2019). Stray Flux Monitoring for Reliable Detection of Rotor Faults Under the Influence of Rotor Axial Air Ducts. IEEE Transactions on Industrial Electronics, 66(10), 7561-7570. doi:10.1109/tie.2018.2880670 es_ES
dc.description.references ABB Ability Smart Sensor for Motorshttps://new.abb.com/motors-generators/service/advanced-services/smart-sensor/smart-sensor-for-motors es_ES
dc.description.references WEG Motor Scan—Whitepaperhttps://www.weg.net/wegmotorscan/en es_ES
dc.description.references Ceban, A., Pusca, R., & Romary, R. (2012). Study of Rotor Faults in Induction Motors Using External Magnetic Field Analysis. IEEE Transactions on Industrial Electronics, 59(5), 2082-2093. doi:10.1109/tie.2011.2163285 es_ES
dc.description.references ISHKOVA, I. (2016). Detection and classification of faults in induction motor by means of motor current signature analysis and stray flux monitoring. PRZEGLĄD ELEKTROTECHNICZNY, 1(4), 168-172. doi:10.15199/48.2016.04.36 es_ES
dc.description.references Pons-Llinares, J., Antonino-Daviu, J. A., Riera-Guasp, M., Bin Lee, S., Kang, T., & Yang, C. (2015). Advanced Induction Motor Rotor Fault Diagnosis Via Continuous and Discrete Time–Frequency Tools. IEEE Transactions on Industrial Electronics, 62(3), 1791-1802. doi:10.1109/tie.2014.2355816 es_ES
dc.description.references Antonino-Daviu, J., Quijano-Lopez, A., Climente-Alarcon, V., & Garin-Abellan, C. (2017). Reliable Detection of Rotor Winding Asymmetries in Wound Rotor Induction Motors via Integral Current Analysis. IEEE Transactions on Industry Applications, 53(3), 2040-2048. doi:10.1109/tia.2017.2672524 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem