- -

Effect of electrical stimulation on chondrogenic differentiation of mesenchymal stem cells cultured in hyaluronic acid - Gelatin injectable hydrogels

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Effect of electrical stimulation on chondrogenic differentiation of mesenchymal stem cells cultured in hyaluronic acid - Gelatin injectable hydrogels

Mostrar el registro completo del ítem

Vaca-González, JJ.; Clara-Trujillo, S.; Guillot-Ferriols, MT.; Ródenas Rochina, J.; Sanchis Sánchez, MJ.; Gómez Ribelles, JL.; Garzón-Alvarado, DA.... (2020). Effect of electrical stimulation on chondrogenic differentiation of mesenchymal stem cells cultured in hyaluronic acid - Gelatin injectable hydrogels. Bioelectrochemistry. 134:1-11. https://doi.org/10.1016/j.bioelechem.2020.107536

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/166218

Ficheros en el ítem

Metadatos del ítem

Título: Effect of electrical stimulation on chondrogenic differentiation of mesenchymal stem cells cultured in hyaluronic acid - Gelatin injectable hydrogels
Autor: Vaca-González, Juan Jairo Clara-Trujillo, Sandra Guillot-Ferriols, María Teresa Ródenas Rochina, Joaquín Sanchis Sánchez, María Jesús Gómez Ribelles, José Luís Garzón-Alvarado, Diego Alexander Gallego-Ferrer, Gloria
Entidad UPV: Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada
Fecha difusión:
Resumen:
[EN] Electrical stimulation (ES) has provided enhanced chondrogenesis of mesenchymal stem cells (MSCs) cultured in micro-mass without the addition of exogenous growth factors. In this study, we demonstrate for the first ...[+]
Palabras clave: Chondrogenic differentiation , Electric fields , Injectable hydrogels , Hyaluronic acid , Gelatin Mesenchymal stem cells
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Bioelectrochemistry. (issn: 1567-5394 )
DOI: 10.1016/j.bioelechem.2020.107536
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.bioelechem.2020.107536
Código del Proyecto:
info:eu-repo/grantAgreement/COLCIENCIAS//712-2015 50457/
info:eu-repo/grantAgreement/COLCIENCIAS//647/
info:eu-repo/grantAgreement/MINECO//MAT2016-76039-C4-1-R/ES/BIOMATERIALES PIEZOELECTRICOS PARA LA DIFERENCIACION CELULAR EN INTERFASES CELULA-MATERIAL ELECTRICAMENTE ACTIVAS/
Agradecimientos:
The financial support received from COLCIENCIAS through Fellowship No. 647 and Grant 712-2015 No. 50457 is acknowledged, as is that from the Spain Ministry of Economy and Competitiveness through the MAT2016-76039-C4-1-R ...[+]
Tipo: Artículo

References

Vaca-González, J. J., Guevara, J. M., Moncayo, M. A., Castro-Abril, H., Hata, Y., & Garzón-Alvarado, D. A. (2017). Biophysical Stimuli: A Review of Electrical and Mechanical Stimulation in Hyaline Cartilage. CARTILAGE, 10(2), 157-172. doi:10.1177/1947603517730637

Awad, H. A., Quinn Wickham, M., Leddy, H. A., Gimble, J. M., & Guilak, F. (2004). Chondrogenic differentiation of adipose-derived adult stem cells in agarose, alginate, and gelatin scaffolds. Biomaterials, 25(16), 3211-3222. doi:10.1016/j.biomaterials.2003.10.045

Akanji, O. O., Lee, D. A., & Bader, D. A. (2008). The effects of direct current stimulation on isolated chondrocytes seeded in 3D agarose constructs. Biorheology, 45(3-4), 229-243. doi:10.3233/bir-2008-0473 [+]
Vaca-González, J. J., Guevara, J. M., Moncayo, M. A., Castro-Abril, H., Hata, Y., & Garzón-Alvarado, D. A. (2017). Biophysical Stimuli: A Review of Electrical and Mechanical Stimulation in Hyaline Cartilage. CARTILAGE, 10(2), 157-172. doi:10.1177/1947603517730637

Awad, H. A., Quinn Wickham, M., Leddy, H. A., Gimble, J. M., & Guilak, F. (2004). Chondrogenic differentiation of adipose-derived adult stem cells in agarose, alginate, and gelatin scaffolds. Biomaterials, 25(16), 3211-3222. doi:10.1016/j.biomaterials.2003.10.045

Akanji, O. O., Lee, D. A., & Bader, D. A. (2008). The effects of direct current stimulation on isolated chondrocytes seeded in 3D agarose constructs. Biorheology, 45(3-4), 229-243. doi:10.3233/bir-2008-0473

Burnsed, O. A., Schwartz, Z., Marchand, K. O., Hyzy, S. L., Olivares-Navarrete, R., & Boyan, B. D. (2016). Hydrogels derived from cartilage matrices promote induction of human mesenchymal stem cell chondrogenic differentiation. Acta Biomaterialia, 43, 139-149. doi:10.1016/j.actbio.2016.07.034

Singh, D., Tripathi, A., Zo, S., Singh, D., & Han, S. S. (2014). Synthesis of composite gelatin-hyaluronic acid-alginate porous scaffold and evaluation for in vitro stem cell growth and in vivo tissue integration. Colloids and Surfaces B: Biointerfaces, 116, 502-509. doi:10.1016/j.colsurfb.2014.01.049

Kim, I. L., Mauck, R. L., & Burdick, J. A. (2011). Hydrogel design for cartilage tissue engineering: A case study with hyaluronic acid. Biomaterials, 32(34), 8771-8782. doi:10.1016/j.biomaterials.2011.08.073

Moulisová, V., Poveda-Reyes, S., Sanmartín-Masiá, E., Quintanilla-Sierra, L., Salmerón-Sánchez, M., & Gallego Ferrer, G. (2017). Hybrid Protein–Glycosaminoglycan Hydrogels Promote Chondrogenic Stem Cell Differentiation. ACS Omega, 2(11), 7609-7620. doi:10.1021/acsomega.7b01303

Levett, P. A., Melchels, F. P. W., Schrobback, K., Hutmacher, D. W., Malda, J., & Klein, T. J. (2014). A biomimetic extracellular matrix for cartilage tissue engineering centered on photocurable gelatin, hyaluronic acid and chondroitin sulfate. Acta Biomaterialia, 10(1), 214-223. doi:10.1016/j.actbio.2013.10.005

Chen, Y.-C., Su, W.-Y., Yang, S.-H., Gefen, A., & Lin, F.-H. (2013). In situ forming hydrogels composed of oxidized high molecular weight hyaluronic acid and gelatin for nucleus pulposus regeneration. Acta Biomaterialia, 9(2), 5181-5193. doi:10.1016/j.actbio.2012.09.039

Murphy, C. M., Matsiko, A., Haugh, M. G., Gleeson, J. P., & O’Brien, F. J. (2012). Mesenchymal stem cell fate is regulated by the composition and mechanical properties of collagen–glycosaminoglycan scaffolds. Journal of the Mechanical Behavior of Biomedical Materials, 11, 53-62. doi:10.1016/j.jmbbm.2011.11.009

Shu, X. Z., Liu, Y., Palumbo, F., & Prestwich, G. D. (2003). Disulfide-crosslinked hyaluronan-gelatin hydrogel films: a covalent mimic of the extracellular matrix for in vitro cell growth. Biomaterials, 24(21), 3825-3834. doi:10.1016/s0142-9612(03)00267-9

Vanderhooft, J. L., Alcoutlabi, M., Magda, J. J., & Prestwich, G. D. (2009). Rheological Properties of Cross-Linked Hyaluronan-Gelatin Hydrogels for Tissue Engineering. Macromolecular Bioscience, 9(1), 20-28. doi:10.1002/mabi.200800141

Camci-Unal, G., Cuttica, D., Annabi, N., Demarchi, D., & Khademhosseini, A. (2013). Synthesis and Characterization of Hybrid Hyaluronic Acid-Gelatin Hydrogels. Biomacromolecules, 14(4), 1085-1092. doi:10.1021/bm3019856

Puetzer, J. L., Petitte, J. N., & Loboa, E. G. (2010). Comparative Review of Growth Factors for Induction of Three-DimensionalIn VitroChondrogenesis in Human Mesenchymal Stem Cells Isolated from Bone Marrow and Adipose Tissue. Tissue Engineering Part B: Reviews, 16(4), 435-444. doi:10.1089/ten.teb.2009.0705

Hwang, N. S., Kim, M. S., Sampattavanich, S., Baek, J. H., Zhang, Z., & Elisseeff, J. (2006). Effects of Three-Dimensional Culture and Growth Factors on the Chondrogenic Differentiation of Murine Embryonic Stem Cells. Stem Cells, 24(2), 284-291. doi:10.1634/stemcells.2005-0024

Balint, R., Cassidy, N. J., & Cartmell, S. H. (2013). Electrical Stimulation: A Novel Tool for Tissue Engineering. Tissue Engineering Part B: Reviews, 19(1), 48-57. doi:10.1089/ten.teb.2012.0183

N. Tandon, et al., Alignment and elongation of human adipose-derived stem cells in response to direct-current electrical stimulation, in: 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2009, pp. 6517–6521.

Zhao, Z., Watt, C., Karystinou, A., Roelofs, A., McCaig, C., … De Bari, C. (2011). Directed migration of human bone marrow mesenchymal stem cells in a physiological direct current electric field. European Cells and Materials, 22, 344-358. doi:10.22203/ecm.v022a26

Banks, T. A., Luckman, P. S. B., Frith, J. E., & Cooper-White, J. J. (2015). Effects of electric fields on human mesenchymal stem cell behaviour and morphology using a novel multichannel device. Integrative Biology, 7(6), 693-712. doi:10.1039/c4ib00297k

Hernández-Bule, M. L., Paíno, C. L., Trillo, M. Á., & Úbeda, A. (2014). Electric Stimulation at 448 kHz Promotes Proliferation of Human Mesenchymal Stem Cells. Cellular Physiology and Biochemistry, 34(5), 1741-1755. doi:10.1159/000366375

Xu, J., Wang, W., Clark, C. C., & Brighton, C. T. (2009). Signal transduction in electrically stimulated articular chondrocytes involves translocation of extracellular calcium through voltage-gated channels. Osteoarthritis and Cartilage, 17(3), 397-405. doi:10.1016/j.joca.2008.07.001

Taghian, T., Narmoneva, D. A., & Kogan, A. B. (2015). Modulation of cell function by electric field: a high-resolution analysis. Journal of The Royal Society Interface, 12(107), 20150153. doi:10.1098/rsif.2015.0153

Sundelacruz, S., Levin, M., & Kaplan, D. L. (2009). Role of Membrane Potential in the Regulation of Cell Proliferation and Differentiation. Stem Cell Reviews and Reports, 5(3), 231-246. doi:10.1007/s12015-009-9080-2

Rodenas-Rochina, J., Kelly, D. J., Gómez Ribelles, J. L., & Lebourg, M. (2016). Compositional changes to synthetic biodegradable scaffolds modulate the influence of hydrostatic pressure on chondrogenesis of mesenchymal stem cells. Biomedical Physics & Engineering Express, 2(3), 035005. doi:10.1088/2057-1976/2/3/035005

Poveda-Reyes, S., Moulisova, V., Sanmartín-Masiá, E., Quintanilla-Sierra, L., Salmerón-Sánchez, M., & Ferrer, G. G. (2016). Gelatin-Hyaluronic Acid Hydrogels with Tuned Stiffness to Counterbalance Cellular Forces and Promote Cell Differentiation. Macromolecular Bioscience, 16(9), 1311-1324. doi:10.1002/mabi.201500469

Sanmartín-Masiá, E., Poveda-Reyes, S., & Gallego Ferrer, G. (2016). Extracellular matrix–inspired gelatin/hyaluronic acid injectable hydrogels. International Journal of Polymeric Materials and Polymeric Biomaterials, 66(6), 280-288. doi:10.1080/00914037.2016.1201828

Shu, X. Z., Liu, Y., Luo, Y., Roberts, M. C., & Prestwich, G. D. (2002). Disulfide Cross-Linked Hyaluronan Hydrogels. Biomacromolecules, 3(6), 1304-1311. doi:10.1021/bm025603c

Thorpe, S. D., Buckley, C. T., Vinardell, T., O’Brien, F. J., Campbell, V. A., & Kelly, D. J. (2008). Dynamic compression can inhibit chondrogenesis of mesenchymal stem cells. Biochemical and Biophysical Research Communications, 377(2), 458-462. doi:10.1016/j.bbrc.2008.09.154

Lennon, D. P., & Caplan, A. I. (2006). Isolation of human marrow-derived mesenchymal stem cells. Experimental Hematology, 34(11), 1604-1605. doi:10.1016/j.exphem.2006.07.014

Vaca-González, J. J., Guevara, J. M., Vega, J. F., & Garzón-Alvarado, D. A. (2015). An In Vitro Chondrocyte Electrical Stimulation Framework: A Methodology to Calculate Electric Fields and Modulate Proliferation, Cell Death and Glycosaminoglycan Synthesis. Cellular and Molecular Bioengineering, 9(1), 116-126. doi:10.1007/s12195-015-0419-2

Vaca-González, J. J., Escobar, J. F., Guevara, J. M., Hata, Y. A., Gallego Ferrer, G., & Garzón-Alvarado, D. A. (2019). Capacitively coupled electrical stimulation of rat chondroepiphysis explants: A histomorphometric analysis. Bioelectrochemistry, 126, 1-11. doi:10.1016/j.bioelechem.2018.11.004

Casado, J. G., Gomez-Mauricio, G., Alvarez, V., Mijares, J., Tarazona, R., Bernad, A., & Sanchez-Margallo, F. M. (2012). Comparative phenotypic and molecular characterization of porcine mesenchymal stem cells from different sources for translational studies in a large animal model. Veterinary Immunology and Immunopathology, 147(1-2), 104-112. doi:10.1016/j.vetimm.2012.03.015

Donnelly, P. E., Chen, T., Finch, A., Brial, C., Maher, S. A., & Torzilli, P. A. (2017). Photocrosslinked tyramine-substituted hyaluronate hydrogels with tunable mechanical properties improve immediate tissue-hydrogel interfacial strength in articular cartilage. Journal of Biomaterials Science, Polymer Edition, 28(6), 582-600. doi:10.1080/09205063.2017.1289035

Pietrucha, K., & Marzec, E. (2005). Dielectric properties of the collagen–glycosaminoglycans scaffolds in the temperature range of thermal decomposition. Biophysical Chemistry, 118(1), 51-56. doi:10.1016/j.bpc.2005.07.006

Dvořáková, J., Kučera, L., Kučera, J., Švík, K., Foglarová, M., Muthný, T., … Kubala, L. (2013). Chondrogenic differentiation of mesenchymal stem cells in a hydrogel system based on an enzymatically crosslinked tyramine derivative of hyaluronan. Journal of Biomedical Materials Research Part A, 102(10), 3523-3530. doi:10.1002/jbm.a.35033

Chung, C., & Burdick, J. A. (2009). Influence of Three-Dimensional Hyaluronic Acid Microenvironments on Mesenchymal Stem Cell Chondrogenesis. Tissue Engineering Part A, 15(2), 243-254. doi:10.1089/ten.tea.2008.0067

Salamon, A., van Vlierberghe, S., van Nieuwenhove, I., Baudisch, F., Graulus, G.-J., Benecke, V., … Peters, K. (2014). Gelatin-Based Hydrogels Promote Chondrogenic Differentiation of Human Adipose Tissue-Derived Mesenchymal Stem Cells In Vitro. Materials, 7(2), 1342-1359. doi:10.3390/ma7021342

Ogawa, T., Akazawa, T., & Tabata, Y. (2010). In Vitro Proliferation and Chondrogenic Differentiation of Rat Bone Marrow Stem Cells Cultured with Gelatin Hydrogel Microspheres for TGF-β1 Release. Journal of Biomaterials Science, Polymer Edition, 21(5), 609-621. doi:10.1163/156856209x434638

J.F. Escobar, Evaluación in vitro del efecto de una estimulación con campos magnéticos a condrocitos, Universidad Nacional de Colombia, 2019.

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem