- -

Development of electrospun active films of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by the incorporation of cyclodextrin inclusion complexes containing oregano essential oil

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Development of electrospun active films of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by the incorporation of cyclodextrin inclusion complexes containing oregano essential oil

Mostrar el registro completo del ítem

Figueroa-Lopez, K.; Enescu, D.; Torres-Giner, S.; Cabedo, L.; Cerqueira, M.; Pastrana, L.; Fuciños, P.... (2020). Development of electrospun active films of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by the incorporation of cyclodextrin inclusion complexes containing oregano essential oil. Food Hydrocolloids. 108:1-18. https://doi.org/10.1016/j.foodhyd.2020.106013

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/166222

Ficheros en el ítem

Metadatos del ítem

Título: Development of electrospun active films of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by the incorporation of cyclodextrin inclusion complexes containing oregano essential oil
Autor: Figueroa-Lopez, K.J. Enescu, D. Torres-Giner, S. Cabedo, L. Cerqueira, M.A. Pastrana, L. Fuciños, P. Lagaron, J.M.
Entidad UPV: Universitat Politècnica de València. Instituto Universitario de Ingeniería de Alimentos para el Desarrollo - Institut Universitari d'Enginyeria d'Aliments per al Desenvolupament
Fecha difusión:
Resumen:
[EN] This paper reports the development of biodegradable active packaging films of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) by the incorporation of alpha- and gamma-cyclodextrins (alpha-CD and gamma-CDs) containing ...[+]
Palabras clave: Polyhydroxyalakanoates , Cyclodextrins , Essential oils , Antioxidant , Antibacterial , Active packaging
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Food Hydrocolloids. (issn: 0268-005X )
DOI: 10.1016/j.foodhyd.2020.106013
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.foodhyd.2020.106013
Código del Proyecto:
info:eu-repo/grantAgreement/EC/H2020/773872/EU/HIGH PERFORMANCE POLYHYDROXYALKANOATES BASED PACKAGING TO MINIMISE FOOD WASTE/
info:eu-repo/grantAgreement/MINECO//IJCI-2016-29675/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-097249-B-C21/ES/ENVASE ACTIVO MULTICAPA TERMOCONFORMABLE DE ALTA BARRERA BASADO EN BIOECONOMIA CIRCULAR/
info:eu-repo/grantAgreement/GVA//0001426013N810001A201/
Agradecimientos:
The authors would like to thank the Unidad Asociada IATA-UJI "Plastics Technology" and the Spanish Ministry of Science and Innovation (MICI) project RTI 2018-097249-B-C21 and the H2020 EU project YPACK (reference number ...[+]
Tipo: Artículo

References

Ashori, A., Jonoobi, M., Ayrilmis, N., Shahreki, A., & Fashapoyeh, M. A. (2019). Preparation and characterization of polyhydroxybutyrate-co-valerate (PHBV) as green composites using nano reinforcements. International Journal of Biological Macromolecules, 136, 1119-1124. doi:10.1016/j.ijbiomac.2019.06.181

Aytac, Z., Ipek, S., Durgun, E., Tekinay, T., & Uyar, T. (2017). Antibacterial electrospun zein nanofibrous web encapsulating thymol/cyclodextrin-inclusion complex for food packaging. Food Chemistry, 233, 117-124. doi:10.1016/j.foodchem.2017.04.095

Bakkali, F., Averbeck, S., Averbeck, D., & Idaomar, M. (2008). Biological effects of essential oils – A review. Food and Chemical Toxicology, 46(2), 446-475. doi:10.1016/j.fct.2007.09.106 [+]
Ashori, A., Jonoobi, M., Ayrilmis, N., Shahreki, A., & Fashapoyeh, M. A. (2019). Preparation and characterization of polyhydroxybutyrate-co-valerate (PHBV) as green composites using nano reinforcements. International Journal of Biological Macromolecules, 136, 1119-1124. doi:10.1016/j.ijbiomac.2019.06.181

Aytac, Z., Ipek, S., Durgun, E., Tekinay, T., & Uyar, T. (2017). Antibacterial electrospun zein nanofibrous web encapsulating thymol/cyclodextrin-inclusion complex for food packaging. Food Chemistry, 233, 117-124. doi:10.1016/j.foodchem.2017.04.095

Bakkali, F., Averbeck, S., Averbeck, D., & Idaomar, M. (2008). Biological effects of essential oils – A review. Food and Chemical Toxicology, 46(2), 446-475. doi:10.1016/j.fct.2007.09.106

Beirão-da-Costa, S., Duarte, C., Bourbon, A. I., Pinheiro, A. C., Januário, M. I. N., Vicente, A. A., … Delgadillo, I. (2013). Inulin potential for encapsulation and controlled delivery of Oregano essential oil. Food Hydrocolloids, 33(2), 199-206. doi:10.1016/j.foodhyd.2013.03.009

Bilia, A. R., Guccione, C., Isacchi, B., Righeschi, C., Firenzuoli, F., & Bergonzi, M. C. (2014). Essential Oils Loaded in Nanosystems: A Developing Strategy for a Successful Therapeutic Approach. Evidence-Based Complementary and Alternative Medicine, 2014, 1-14. doi:10.1155/2014/651593

Busolo, M. A., & Lagaron, J. M. (2015). Antioxidant polyethylene films based on a resveratrol containing Clay of Interest in Food Packaging Applications. Food Packaging and Shelf Life, 6, 30-41. doi:10.1016/j.fpsl.2015.08.004

Campos, E. V. R., Proença, P. L. F., Oliveira, J. L., Melville, C. C., Della Vechia, J. F., de Andrade, D. J., & Fraceto, L. F. (2018). Chitosan nanoparticles functionalized with β-cyclodextrin: a promising carrier for botanical pesticides. Scientific Reports, 8(1). doi:10.1038/s41598-018-20602-y

Ceccato, M., Lo Nostro, P., Rossi, C., Bonechi, C., Donati, A., & Baglioni, P. (1997). Molecular Dynamics of Novel α-Cyclodextrin Adducts Studied by 13C-NMR Relaxation. The Journal of Physical Chemistry B, 101(26), 5094-5099. doi:10.1021/jp9638447

Celebioglu, A., Umu, O. C. O., Tekinay, T., & Uyar, T. (2014). Antibacterial electrospun nanofibers from triclosan/cyclodextrin inclusion complexes. Colloids and Surfaces B: Biointerfaces, 116, 612-619. doi:10.1016/j.colsurfb.2013.10.029

Crini, G. (2014). Review: A History of Cyclodextrins. Chemical Reviews, 114(21), 10940-10975. doi:10.1021/cr500081p

Das, S., & Subuddhi, U. (2015). Studies on the complexation of diclofenac sodium with β–cyclodextrin: Influence of method of preparation. Journal of Molecular Structure, 1099, 482-489. doi:10.1016/j.molstruc.2015.07.001

De Vincenzi, M., Stammati, A., De Vincenzi, A., & Silano, M. (2004). Constituents of aromatic plants: carvacrol. Fitoterapia, 75(7-8), 801-804. doi:10.1016/j.fitote.2004.05.002

Del Valle, E. M. M. (2004). Cyclodextrins and their uses: a review. Process Biochemistry, 39(9), 1033-1046. doi:10.1016/s0032-9592(03)00258-9

Dietrich, K., Dumont, M.-J., Del Rio, L. F., & Orsat, V. (2019). Sustainable PHA production in integrated lignocellulose biorefineries. New Biotechnology, 49, 161-168. doi:10.1016/j.nbt.2018.11.004

Figueroa-Lopez, K., Andrade-Mahecha, M., & Torres-Vargas, O. (2018). Development of Antimicrobial Biocomposite Films to Preserve the Quality of Bread. Molecules, 23(1), 212. doi:10.3390/molecules23010212

Figueroa-Lopez, K., Castro-Mayorga, J., Andrade-Mahecha, M., Cabedo, L., & Lagaron, J. (2018). Antibacterial and Barrier Properties of Gelatin Coated by Electrospun Polycaprolactone Ultrathin Fibers Containing Black Pepper Oleoresin of Interest in Active Food Biopackaging Applications. Nanomaterials, 8(4), 199. doi:10.3390/nano8040199

Figueroa-Lopez, K. J., Vicente, A. A., Reis, M. A. M., Torres-Giner, S., & Lagaron, J. M. (2019). Antimicrobial and Antioxidant Performance of Various Essential Oils and Natural Extracts and Their Incorporation into Biowaste Derived Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Layers Made from Electrospun Ultrathin Fibers. Nanomaterials, 9(2), 144. doi:10.3390/nano9020144

Gao, N., Yang, J., Wu, Y., Yue, J., Cao, G., Zhang, A., … Feng, Z. (2019). β-Cyclodextrin functionalized coaxially electrospun poly(vinylidene fluoride) @ polystyrene membranes with higher mechanical performance for efficient removal of phenolphthalein. Reactive and Functional Polymers, 141, 100-111. doi:10.1016/j.reactfunctpolym.2019.05.001

Gaur, S., Lopez, E. C., Ojha, A., & Andrade, J. E. (2018). Functionalization of Lipid‐Based Nutrient Supplement with β‐Cyclodextrin Inclusions of Oregano Essential Oil. Journal of Food Science, 83(6), 1748-1756. doi:10.1111/1750-3841.14178

Giordano, F., Novak, C., & Moyano, J. R. (2001). Thermal analysis of cyclodextrins and their inclusion compounds. Thermochimica Acta, 380(2), 123-151. doi:10.1016/s0040-6031(01)00665-7

Guimarães, A. G., Oliveira, M. A., Alves, R. dos S., Menezes, P. dos P., Serafini, M. R., de Souza Araújo, A. A., … Quintans Júnior, L. J. (2015). Encapsulation of carvacrol, a monoterpene present in the essential oil of oregano, with β-cyclodextrin, improves the pharmacological response on cancer pain experimental protocols. Chemico-Biological Interactions, 227, 69-76. doi:10.1016/j.cbi.2014.12.020

Haloci, E., Toska, V., Shkreli, R., Goci, E., Vertuani, S., & Manfredini, S. (2014). Encapsulation of Satureja montana essential oil in β-cyclodextrin. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 80(1-2), 147-153. doi:10.1007/s10847-014-0437-z

Harada, A., & Kamachi, M. (1990). Complex formation between poly(ethylene glycol) and α-cyclodextrin. Macromolecules, 23(10), 2821-2823. doi:10.1021/ma00212a039

Harada, A., Li, J., & Kamachi, M. (1992). The molecular necklace: a rotaxane containing many threaded α-cyclodextrins. Nature, 356(6367), 325-327. doi:10.1038/356325a0

Harada, A., Li, J., & Kamachi, M. (1993). Synthesis of a tubular polymer from threaded cyclodextrins. Nature, 364(6437), 516-518. doi:10.1038/364516a0

Harada, A., Suzuki, S., Okada, M., & Kamachi, M. (1996). Preparation and Characterization of Inclusion Complexes of Polyisobutylene with Cyclodextrins. Macromolecules, 29(17), 5611-5614. doi:10.1021/ma960428b

Hedges, A. R. (1998). Industrial Applications of Cyclodextrins. Chemical Reviews, 98(5), 2035-2044. doi:10.1021/cr970014w

Hill, L. E., Gomes, C., & Taylor, T. M. (2013). Characterization of beta-cyclodextrin inclusion complexes containing essential oils (trans-cinnamaldehyde, eugenol, cinnamon bark, and clove bud extracts) for antimicrobial delivery applications. LWT - Food Science and Technology, 51(1), 86-93. doi:10.1016/j.lwt.2012.11.011

Hosseini, S. F., Zandi, M., Rezaei, M., & Farahmandghavi, F. (2013). Two-step method for encapsulation of oregano essential oil in chitosan nanoparticles: Preparation, characterization and in vitro release study. Carbohydrate Polymers, 95(1), 50-56. doi:10.1016/j.carbpol.2013.02.031

Jouki, M., Yazdi, F. T., Mortazavi, S. A., & Koocheki, A. (2014). Quince seed mucilage films incorporated with oregano essential oil: Physical, thermal, barrier, antioxidant and antibacterial properties. Food Hydrocolloids, 36, 9-19. doi:10.1016/j.foodhyd.2013.08.030

Ju, J., Chen, X., Xie, Y., Yu, H., Guo, Y., Cheng, Y., … Yao, W. (2019). Application of essential oil as a sustained release preparation in food packaging. Trends in Food Science & Technology, 92, 22-32. doi:10.1016/j.tifs.2019.08.005

Kaolaor, A., Phunpee, S., Ruktanonchai, U. R., & Suwantong, O. (2019). Effects of β-cyclodextrin complexation of curcumin and quaternization of chitosan on the properties of the blend films for use as wound dressings. Journal of Polymer Research, 26(2). doi:10.1007/s10965-019-1703-y

Kayaci, F., & Uyar, T. (2012). Encapsulation of vanillin/cyclodextrin inclusion complex in electrospun polyvinyl alcohol (PVA) nanowebs: Prolonged shelf-life and high temperature stability of vanillin. Food Chemistry, 133(3), 641-649. doi:10.1016/j.foodchem.2012.01.040

Liang, H., Yuan, Q., Vriesekoop, F., & Lv, F. (2012). Effects of cyclodextrins on the antimicrobial activity of plant-derived essential oil compounds. Food Chemistry, 135(3), 1020-1027. doi:10.1016/j.foodchem.2012.05.054

Li, D., & Xia, Y. (2004). Electrospinning of Nanofibers: Reinventing the Wheel? Advanced Materials, 16(14), 1151-1170. doi:10.1002/adma.200400719

Loftsson, T., & Brewster, M. E. (1996). Pharmaceutical Applications of Cyclodextrins. 1. Drug Solubilization and Stabilization. Journal of Pharmaceutical Sciences, 85(10), 1017-1025. doi:10.1021/js950534b

Lu, Z., Cheng, B., Hu, Y., Zhang, Y., & Zou, G. (2009). Complexation of resveratrol with cyclodextrins: Solubility and antioxidant activity. Food Chemistry, 113(1), 17-20. doi:10.1016/j.foodchem.2008.04.042

Marques, H. M. C. (2010). A review on cyclodextrin encapsulation of essential oils and volatiles. Flavour and Fragrance Journal, 25(5), 313-326. doi:10.1002/ffj.2019

Melendez-Rodriguez, B., Figueroa-Lopez, K. J., Bernardos, A., Martínez-Máñez, R., Cabedo, L., Torres-Giner, S., & Lagaron, J. M. (2019). Electrospun Antimicrobial Films of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Containing Eugenol Essential Oil Encapsulated in Mesoporous Silica Nanoparticles. Nanomaterials, 9(2), 227. doi:10.3390/nano9020227

NAKANISHI, K., MASUKAWA, T., NADAI, T., YOSHII, K., OKADA, S., & MIYAJIMA, K. (1997). Sustained Release of Flufenamic Acid from a Drug-Triacetyl-.BETA.-Cyclodextrin Complex. Biological and Pharmaceutical Bulletin, 20(1), 66-70. doi:10.1248/bpb.20.66

Owen, L., & Laird, K. (2018). Synchronous application of antibiotics and essential oils: dual mechanisms of action as a potential solution to antibiotic resistance. Critical Reviews in Microbiology, 44(4), 414-435. doi:10.1080/1040841x.2018.1423616

Ozdemir, N., Pola, C. C., Teixeira, B. N., Hill, L. E., Bayrak, A., & Gomes, C. L. (2018). Preparation of black pepper oleoresin inclusion complexes based on beta-cyclodextrin for antioxidant and antimicrobial delivery applications using kneading and freeze drying methods: A comparative study. LWT, 91, 439-445. doi:10.1016/j.lwt.2018.01.046

Ponce Cevallos, P. A., Buera, M. P., & Elizalde, B. E. (2010). Encapsulation of cinnamon and thyme essential oils components (cinnamaldehyde and thymol) in β-cyclodextrin: Effect of interactions with water on complex stability. Journal of Food Engineering, 99(1), 70-75. doi:10.1016/j.jfoodeng.2010.01.039

Prakash, B., Kedia, A., Mishra, P. K., & Dubey, N. K. (2015). Plant essential oils as food preservatives to control moulds, mycotoxin contamination and oxidative deterioration of agri-food commodities – Potentials and challenges. Food Control, 47, 381-391. doi:10.1016/j.foodcont.2014.07.023

Prakash, B., Singh, P., Kedia, A., & Dubey, N. K. (2012). Assessment of some essential oils as food preservatives based on antifungal, antiaflatoxin, antioxidant activities and in vivo efficacy in food system. Food Research International, 49(1), 201-208. doi:10.1016/j.foodres.2012.08.020

Quiles-Carrillo, L., Montanes, N., Lagaron, J. M., Balart, R., & Torres-Giner, S. (2018). In Situ Compatibilization of Biopolymer Ternary Blends by Reactive Extrusion with Low-Functionality Epoxy-Based Styrene–Acrylic Oligomer. Journal of Polymers and the Environment, 27(1), 84-96. doi:10.1007/s10924-018-1324-2

Rakmai, J., Cheirsilp, B., Mejuto, J. C., Torrado-Agrasar, A., & Simal-Gándara, J. (2017). Physico-chemical characterization and evaluation of bio-efficacies of black pepper essential oil encapsulated in hydroxypropyl-beta-cyclodextrin. Food Hydrocolloids, 65, 157-164. doi:10.1016/j.foodhyd.2016.11.014

Raut, J. S., & Karuppayil, S. M. (2014). A status review on the medicinal properties of essential oils. Industrial Crops and Products, 62, 250-264. doi:10.1016/j.indcrop.2014.05.055

Ribeiro-Santos, R., Andrade, M., Melo, N. R. de, & Sanches-Silva, A. (2017). Use of essential oils in active food packaging: Recent advances and future trends. Trends in Food Science & Technology, 61, 132-140. doi:10.1016/j.tifs.2016.11.021

Rusa, C. C., Bullions, T. A., Fox, J., Porbeni, F. E., Wang, X., & Tonelli, A. E. (2002). Inclusion Compound Formation with a New Columnar Cyclodextrin Host. Langmuir, 18(25), 10016-10023. doi:10.1021/la0262452

Sagiri, S. S., Anis, A., & Pal, K. (2015). Review on Encapsulation of Vegetable Oils: Strategies, Preparation Methods, and Applications. Polymer-Plastics Technology and Engineering, 55(3), 291-311. doi:10.1080/03602559.2015.1050521

Santos, E. H., Kamimura, J. A., Hill, L. E., & Gomes, C. L. (2015). Characterization of carvacrol beta-cyclodextrin inclusion complexes as delivery systems for antibacterial and antioxidant applications. LWT - Food Science and Technology, 60(1), 583-592. doi:10.1016/j.lwt.2014.08.046

Saokham, P., Muankaew, C., Jansook, P., & Loftsson, T. (2018). Solubility of Cyclodextrins and Drug/Cyclodextrin Complexes. Molecules, 23(5), 1161. doi:10.3390/molecules23051161

Seo, E.-J., Min, S.-G., & Choi, M.-J. (2010). Release characteristics of freeze-dried eugenol encapsulated withβ-cyclodextrin by molecular inclusion method. Journal of Microencapsulation, 27(6), 496-505. doi:10.3109/02652041003681398

Shan, L., Tao, E., Meng, Q., Hou, W., Liu, K., Shang, H., … Zhang, W. (2016). Formulation, optimization, and pharmacodynamic evaluation of chitosan/phospholipid/β-cyclodextrin microspheres. Drug Design, Development and Therapy, 417. doi:10.2147/dddt.s97982

Sharifi-Rad, J., Sureda, A., Tenore, G., Daglia, M., Sharifi-Rad, M., Valussi, M., … Iriti, M. (2017). Biological Activities of Essential Oils: From Plant Chemoecology to Traditional Healing Systems. Molecules, 22(1), 70. doi:10.3390/molecules22010070

Sherry, M., Charcosset, C., Fessi, H., & Greige-Gerges, H. (2013). Essential oils encapsulated in liposomes: a review. Journal of Liposome Research, 23(4), 268-275. doi:10.3109/08982104.2013.819888

Shin, J., Kathuria, A., & Lee, Y. S. (2019). Effect of hydrophilic and hydrophobic cyclodextrins on the release of encapsulated allyl isothiocyanate (AITC) and their potential application for plastic film extrusion. Journal of Applied Polymer Science, 136(42), 48137. doi:10.1002/app.48137

Szejtli, J. (1998). Introduction and General Overview of Cyclodextrin Chemistry. Chemical Reviews, 98(5), 1743-1754. doi:10.1021/cr970022c

Topuz, F., & Uyar, T. (2019). Electrospinning of nanocomposite nanofibers from cyclodextrin and laponite. Composites Communications, 12, 33-38. doi:10.1016/j.coco.2018.12.002

Torres-Giner, S., Martinez-Abad, A., & Lagaron, J. M. (2014). Zein-based ultrathin fibers containing ceramic nanofillers obtained by electrospinning. II. Mechanical properties, gas barrier, and sustained release capacity of biocide thymol in multilayer polylactide films. Journal of Applied Polymer Science, 131(18), n/a-n/a. doi:10.1002/app.40768

Torres-Giner, S., Pérez-Masiá, R., & Lagaron, J. M. (2016). A review on electrospun polymer nanostructures as advanced bioactive platforms. Polymer Engineering & Science, 56(5), 500-527. doi:10.1002/pen.24274

Torres-Giner, S., Torres, A., Ferrándiz, M., Fombuena, V., & Balart, R. (2017). Antimicrobial activity of metal cation-exchanged zeolites and their evaluation on injection-molded pieces of bio-based high-density polyethylene. Journal of Food Safety, 37(4), e12348. doi:10.1111/jfs.12348

Torres-Giner, S., Wilkanowicz, S., Melendez-Rodriguez, B., & Lagaron, J. M. (2017). Nanoencapsulation of Aloe vera in Synthetic and Naturally Occurring Polymers by Electrohydrodynamic Processing of Interest in Food Technology and Bioactive Packaging. Journal of Agricultural and Food Chemistry, 65(22), 4439-4448. doi:10.1021/acs.jafc.7b01393

Wang, C. X., & Chen, S. L. (2005). Fragrance-release Property of β-Cyclodextrin Inclusion Compounds and their Application in Aromatherapy. Journal of Industrial Textiles, 34(3), 157-166. doi:10.1177/1528083705049050

Yildiz, Z. I., Celebioglu, A., Kilic, M. E., Durgun, E., & Uyar, T. (2018). Menthol/cyclodextrin inclusion complex nanofibers: Enhanced water-solubility and high-temperature stability of menthol. Journal of Food Engineering, 224, 27-36. doi:10.1016/j.jfoodeng.2017.12.020

Zainuddin, S., Kamrul Hasan, S. M., Loeven, D., & Hosur, M. (2019). Mechanical, Fire Retardant, Water Absorption and Soil Biodegradation Properties of Poly(3-hydroxy-butyrate-co-3-valerate) Nanofilms. Journal of Polymers and the Environment, 27(10), 2292-2304. doi:10.1007/s10924-019-01517-9

Zhang, J., Shishatskaya, E. I., Volova, T. G., da Silva, L. F., & Chen, G.-Q. (2018). Polyhydroxyalkanoates (PHA) for therapeutic applications. Materials Science and Engineering: C, 86, 144-150. doi:10.1016/j.msec.2017.12.035

Zhang, M., Wang, J., Lyu, Y., Fitriyanti, M., Hou, H., Jin, Z., … Narsimhan, G. (2018). Understanding the antimicrobial activity of water soluble γ-cyclodextrin/alamethicin complex. Colloids and Surfaces B: Biointerfaces, 172, 451-458. doi:10.1016/j.colsurfb.2018.08.065

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem