Mostrar el registro sencillo del ítem
dc.contributor.author | Macian-Sorribes, Hector | es_ES |
dc.contributor.author | Molina González, José Luis | es_ES |
dc.contributor.author | Zazo-Del Dedo, Santiago | es_ES |
dc.contributor.author | Pulido-Velazquez, M. | es_ES |
dc.date.accessioned | 2021-05-13T03:31:37Z | |
dc.date.available | 2021-05-13T03:31:37Z | |
dc.date.issued | 2021-06 | es_ES |
dc.identifier.issn | 0022-1694 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/166256 | |
dc.description.abstract | [EN] This paper aims to assess fully the spatio-temporal dependence dimensions of inflow across two adjacent and parallel basins and among different time steps through Causality. This is addressed from the perspective of Causal Reasoning, supported by Bayesian modelling, under a novel framework named Bayesian Causal Modelling (BCM). This is applied, through a "concept-proof", to the Jucar River Basin (the second largest basin of Eastern Spain, characterized by long and severe drought conditions). In this ¿concept-proof¿ a double goal is evaluated; first dedicated to a lumped analysis of dependence and second a specific one over dry periods focused on time-horizon of the Jucar basin typical drought (3 years). These challenges comprise the development of two fully connected Bayesian Networks (BNs), one for each challenge populated/trained from historical-inflow records. BNs were designed at a season-scale and consequently, time was upscaled and grouped into Irrigation and Non-Irrigation periods, according to Jucar River Basin Authority operational practices. Results achieved showed that BCM framework satisfactorily captured the spatio-temporal dependencies of systems. Furthermore, BCM is able to answer to some key questions over interdependencies between adjacent and parallel subbasins. Those questions may comprise, the amount of spatial dependences among time series, the temporarily conditionality among subbasins and the spatio-temporal dependence among basins. This provides a relevant insight on the intrinsic spatio-temporal dependence structure of inflow time series in complex basins systems. This approach could be very valuable for water resources planning and management, due to its application power for predicting extreme events (e.g. droughts) as well as improving and optimizing the reservoirs operation rules. | es_ES |
dc.description.sponsorship | This work was supported by the by the IMPADAPT project (CGL2013-48424-C2-1-R) with Spanish MINECO (Ministerio de Economía y Competitividad) and European FEDER funds; and the European Union's Horizon 2020 research and innovation programme under the IMPREX project (GA 641.811). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Journal of Hydrology | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Causality | es_ES |
dc.subject | Causal reasoning | es_ES |
dc.subject | Bayesian spatio-temporal dependence | es_ES |
dc.subject | Stochastic hydrology | es_ES |
dc.subject | Jucar river basin | es_ES |
dc.subject | Historical inflow time series | es_ES |
dc.subject.classification | INGENIERIA HIDRAULICA | es_ES |
dc.title | Analysis of spatio-temporal dependence of in flow time series through Bayesian causal modelling | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.jhydrol.2020.125722 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/641811/EU/IMproving PRedictions and management of hydrological EXtremes/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//CGL2013-48424-C2-1-R/ES/ADAPTACION AL CAMBIO GLOBAL EN SISTEMAS DE RECURSOS HIDRICOS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient | es_ES |
dc.description.bibliographicCitation | Macian-Sorribes, H.; Molina González, JL.; Zazo-Del Dedo, S.; Pulido-Velazquez, M. (2021). Analysis of spatio-temporal dependence of in flow time series through Bayesian causal modelling. Journal of Hydrology. 597:1-14. https://doi.org/10.1016/j.jhydrol.2020.125722 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.jhydrol.2020.125722 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 14 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 597 | es_ES |
dc.relation.pasarela | S\425096 | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Allan, R. P., & Soden, B. J. (2008). Atmospheric Warming and the Amplification of Precipitation Extremes. Science, 321(5895), 1481-1484. doi:10.1126/science.1160787 | es_ES |
dc.description.references | Bayes, T., 1763. An essay towards solving a problem in the doctrine of chances. Philos. Trans. Roy. Soc. Lond. 53, 370–418. | es_ES |
dc.description.references | Chang, B., Guan, J., & Aral, M. M. (2015). Scientific Discourse: Climate Change and Sea-Level Rise. Journal of Hydrologic Engineering, 20(1). doi:10.1061/(asce)he.1943-5584.0000860 | es_ES |
dc.description.references | CHJ, 2006. Mapa piezométrico general de la confederación hidrográfica del Júcar. In “Comprobación y evaluación en la Cuenca Piloto del río Júcar de las Guías desarrolladas en el marco de la Estrategia común para la implementación de la Directiva Marco del Agua (in S. Valencia). | es_ES |
dc.description.references | CHJ, 2007. Plan Especial de Alerta y Eventual Sequia en la Confederación Hidrográfica del Júcar (in Spanish). Valencia. | es_ES |
dc.description.references | CHJ, 2015. Plan Hidrológico de la Demarcación Hidrográfica del Júcar. Valencia. | es_ES |
dc.description.references | CHJ, 2020. Sistema de Información del Agua (SIA) de la Confederación Hidrográfica del Júcar.Red Piezométrica Operativa. | es_ES |
dc.description.references | Dehghani, M., Saghafian, B., & Zargar, M. (2019). Probabilistic hydrological drought index forecasting based on meteorological drought index using Archimedean copulas. Hydrology Research, 50(5), 1230-1250. doi:10.2166/nh.2019.051 | es_ES |
dc.description.references | De Michele, C. (2003). A Generalized Pareto intensity-duration model of storm rainfall exploiting 2-Copulas. Journal of Geophysical Research, 108(D2). doi:10.1029/2002jd002534 | es_ES |
dc.description.references | Donat, M. G., Lowry, A. L., Alexander, L. V., O’Gorman, P. A., & Maher, N. (2016). More extreme precipitation in the world’s dry and wet regions. Nature Climate Change, 6(5), 508-513. doi:10.1038/nclimate2941 | es_ES |
dc.description.references | Eum, H.-I., Gupta, A., & Dibike, Y. (2020). Effects of univariate and multivariate statistical downscaling methods on climatic and hydrologic indicators for Alberta, Canada. Journal of Hydrology, 588, 125065. doi:10.1016/j.jhydrol.2020.125065 | es_ES |
dc.description.references | Estrela, M. J., Pe�arrocha, D., & Mill�n, M. (2000). Multi-annual drought episodes in the Mediterranean (Valencia region) from 1950-1996. A spatio-temporal analysis. International Journal of Climatology, 20(13), 1599-1618. doi:10.1002/1097-0088(20001115)20:13<1599::aid-joc559>3.0.co;2-q | es_ES |
dc.description.references | Freire-González, J., Decker, C., & Hall, J. W. (2017). The Economic Impacts of Droughts: A Framework for Analysis. Ecological Economics, 132, 196-204. doi:10.1016/j.ecolecon.2016.11.005 | es_ES |
dc.description.references | Gil, M., Garrido, A., & Gómez-Ramos, A. (2011). Economic analysis of drought risk: An application for irrigated agriculture in Spain. Agricultural Water Management, 98(5), 823-833. doi:10.1016/j.agwat.2010.12.008 | es_ES |
dc.description.references | Hao, Z., & Singh, V. P. (2016). Review of dependence modeling in hydrology and water resources. Progress in Physical Geography: Earth and Environment, 40(4), 549-578. doi:10.1177/0309133316632460 | es_ES |
dc.description.references | Hejazi, M. I., & Cai, X. (2011). Building more realistic reservoir optimization models using data mining – A case study of Shelbyville Reservoir. Advances in Water Resources, 34(6), 701-717. doi:10.1016/j.advwatres.2011.03.001 | es_ES |
dc.description.references | Hurst, H. E. (1951). Long-Term Storage Capacity of Reservoirs. Transactions of the American Society of Civil Engineers, 116(1), 770-799. doi:10.1061/taceat.0006518 | es_ES |
dc.description.references | IGME, 2020a. Map of Permeabilities of Spain scale 1/1000.000. https://igme.maps.arcgis.com/home/webmap/viewer.html?webmap=da8eb570845b41bbb5548c8266eaed0d (Accessed 01.03.20). | es_ES |
dc.description.references | IGME, 2020b. Hydrogeological map of Spain scale 1/1000.000. https://igme.maps.arcgis.com/home/item.html?id=036292dc5b8946bd979a7dc47d2f8561 (Accessed 01.03.20). | es_ES |
dc.description.references | Jain, A., & Kumar, A. M. (2007). Hybrid neural network models for hydrologic time series forecasting. Applied Soft Computing, 7(2), 585-592. doi:10.1016/j.asoc.2006.03.002 | es_ES |
dc.description.references | Jia, Q. M., Li, Y. P., Li, Y. F., & Huang, G. H. (2020). Analyzing variation of inflow from the Syr Darya to the Aral Sea: A Bayesian-neural-network-based factorial analysis method. Journal of Hydrology, 587, 124976. doi:10.1016/j.jhydrol.2020.124976 | es_ES |
dc.description.references | Jyrkama, M. I., & Sykes, J. F. (2007). The impact of climate change on spatially varying groundwater recharge in the grand river watershed (Ontario). Journal of Hydrology, 338(3-4), 237-250. doi:10.1016/j.jhydrol.2007.02.036 | es_ES |
dc.description.references | Kahil, M. T., Dinar, A., & Albiac, J. (2015). Modeling water scarcity and droughts for policy adaptation to climate change in arid and semiarid regions. Journal of Hydrology, 522, 95-109. doi:10.1016/j.jhydrol.2014.12.042 | es_ES |
dc.description.references | Kalra, A., Li, L., Li, X., & Ahmad, S. (2013). Improving Streamflow Forecast Lead Time Using Oceanic-Atmospheric Oscillations for Kaidu River Basin, Xinjiang, China. Journal of Hydrologic Engineering, 18(8), 1031-1040. doi:10.1061/(asce)he.1943-5584.0000707 | es_ES |
dc.description.references | Kim, K., Lee, S., & Jin, Y. (2018). Forecasting Quarterly Inflow to Reservoirs Combining a Copula-Based Bayesian Network Method with Drought Forecasting. Water, 10(2), 233. doi:10.3390/w10020233 | es_ES |
dc.description.references | Kousari, M. R., Hosseini, M. E., Ahani, H., & Hakimelahi, H. (2015). Introducing an operational method to forecast long-term regional drought based on the application of artificial intelligence capabilities. Theoretical and Applied Climatology, 127(1-2), 361-380. doi:10.1007/s00704-015-1624-6 | es_ES |
dc.description.references | Lappenschaar, M., Hommersom, A., Lucas, P.J.F., 2012. Qualitative chain graphs and their use in medicine. Proceedings of the Sixth European Workshop on Probabilistic Graphical Models. Proceedings of the Sixth European Workshop on Probabilistic Graphical Models, Granada, Spain, 2012, pp. 179–185. | es_ES |
dc.description.references | Li, H., Wang, D., Singh, V. P., Wang, Y., Wu, J., Wu, J., … Zhang, J. (2019). Non-stationary frequency analysis of annual extreme rainfall volume and intensity using Archimedean copulas: A case study in eastern China. Journal of Hydrology, 571, 114-131. doi:10.1016/j.jhydrol.2019.01.054 | es_ES |
dc.description.references | Lima, A. R., Cannon, A. J., & Hsieh, W. W. (2016). Forecasting daily streamflow using online sequential extreme learning machines. Journal of Hydrology, 537, 431-443. doi:10.1016/j.jhydrol.2016.03.017 | es_ES |
dc.description.references | Lopez-Nicolas, A., Pulido-Velazquez, M., & Macian-Sorribes, H. (2017). Economic risk assessment of drought impacts on irrigated agriculture. Journal of Hydrology, 550, 580-589. doi:10.1016/j.jhydrol.2017.05.004 | es_ES |
dc.description.references | Madsen, A. L., Lang, M., Kjærulff, U. B., & Jensen, F. (2003). The Hugin Tool for Learning Bayesian Networks. Symbolic and Quantitative Approaches to Reasoning with Uncertainty, 594-605. doi:10.1007/978-3-540-45062-7_49 | es_ES |
dc.description.references | Marcos, P., Lopez-Nicolas, A., Pulido-Velazquez, M., 2017. Analysis of climate change impact on meteorological and hydrological droughts through relative standardized indices. EGUGA, 1391. | es_ES |
dc.description.references | Marcos-Garcia, P., Lopez-Nicolas, A., & Pulido-Velazquez, M. (2017). Combined use of relative drought indices to analyze climate change impact on meteorological and hydrological droughts in a Mediterranean basin. Journal of Hydrology, 554, 292-305. doi:10.1016/j.jhydrol.2017.09.028 | es_ES |
dc.description.references | Mishra, A. K., & Desai, V. R. (2005). Drought forecasting using stochastic models. Stochastic Environmental Research and Risk Assessment, 19(5), 326-339. doi:10.1007/s00477-005-0238-4 | es_ES |
dc.description.references | Mishra, A. K., & Singh, V. P. (2010). A review of drought concepts. Journal of Hydrology, 391(1-2), 202-216. doi:10.1016/j.jhydrol.2010.07.012 | es_ES |
dc.description.references | Mishra, A. K., & Singh, V. P. (2011). Drought modeling – A review. Journal of Hydrology, 403(1-2), 157-175. doi:10.1016/j.jhydrol.2011.03.049 | es_ES |
dc.description.references | Molina, J.-L., & Zazo, S. (2018). Assessment of Temporally Conditioned Runoff Fractions in Unregulated Rivers. Journal of Hydrologic Engineering, 23(5), 04018015. doi:10.1061/(asce)he.1943-5584.0001645 | es_ES |
dc.description.references | Molina, J.-L., Zazo, S., & Martín, A.-M. (2019). Causal Reasoning: Towards Dynamic Predictive Models for Runoff Temporal Behavior of High Dependence Rivers. Water, 11(5), 877. doi:10.3390/w11050877 | es_ES |
dc.description.references | Molina, J.-L., Zazo, S., Martín-Casado, A.-M., & Patino-Alonso, M.-C. (2020). Rivers’ Temporal Sustainability through the Evaluation of Predictive Runoff Methods. Sustainability, 12(5), 1720. doi:10.3390/su12051720 | es_ES |
dc.description.references | Ochoa-Rivera, J. C. (2008). Prospecting droughts with stochastic artificial neural networks. Journal of Hydrology, 352(1-2), 174-180. doi:10.1016/j.jhydrol.2008.01.006 | es_ES |
dc.description.references | Pearl, J., 2014. Graphical models for probabilistic and causal reasoning. In: Gonzalez, T., Diaz-Herrera, J., Tucker, A. (Eds.), Computing Handbook, Third Edition: Computer Science and Software Engineering, Chapman & Hall/CRC, Boca Raton, Florida, USA. | es_ES |
dc.description.references | Peng, T., Zhou, J., Zhang, C., & Fu, W. (2017). Streamflow Forecasting Using Empirical Wavelet Transform and Artificial Neural Networks. Water, 9(6), 406. doi:10.3390/w9060406 | es_ES |
dc.description.references | Roozbahani, A., Ebrahimi, E., & Banihabib, M. E. (2018). A Framework for Ground Water Management Based on Bayesian Network and MCDM Techniques. Water Resources Management, 32(15), 4985-5005. doi:10.1007/s11269-018-2118-y | es_ES |
dc.description.references | Ropero, R. F., Nicholson, A. E., Aguilera, P. A., & Rumí, R. (2018). Learning and inference methodologies for hybrid dynamic Bayesian networks: a case study for a water reservoir system in Andalusia, Spain. Stochastic Environmental Research and Risk Assessment, 32(11), 3117-3135. doi:10.1007/s00477-018-1566-5 | es_ES |
dc.description.references | Said, A. (2006). The Implementation of a Bayesian Network for Watershed Management Decisions. Water Resources Management, 20(4), 591-605. doi:10.1007/s11269-006-3088-z | es_ES |
dc.description.references | Saghafian, B., & Sanginabadi, H. (2020). Multivariate groundwater drought analysis using copulas. Hydrology Research, 51(4), 666-685. doi:10.2166/nh.2020.131 | es_ES |
dc.description.references | SEE, L., & OPENSHAW, S. (2000). A hybrid multi-model approach to river level forecasting. Hydrological Sciences Journal, 45(4), 523-536. doi:10.1080/02626660009492354 | es_ES |
dc.description.references | Trenberth, K. (2011). Changes in precipitation with climate change. Climate Research, 47(1), 123-138. doi:10.3354/cr00953 | es_ES |
dc.description.references | Tsoukalas, I., Efstratiadis, A., & Makropoulos, C. (2019). Building a puzzle to solve a riddle: A multi-scale disaggregation approach for multivariate stochastic processes with any marginal distribution and correlation structure. Journal of Hydrology, 575, 354-380. doi:10.1016/j.jhydrol.2019.05.017 | es_ES |
dc.description.references | Vicente-Serrano, S. M., & Cuadrat-Prats, J. M. (2006). Trends in drought intensity and variability in the middle Ebro valley (NE of the Iberian peninsula) during the second half of the twentieth century. Theoretical and Applied Climatology, 88(3-4), 247-258. doi:10.1007/s00704-006-0236-6 | es_ES |
dc.description.references | Vogel, K., Riggelsen, C., Korup, O., & Scherbaum, F. (2014). Bayesian network learning for natural hazard analyses. Natural Hazards and Earth System Sciences, 14(9), 2605-2626. doi:10.5194/nhess-14-2605-2014 | es_ES |
dc.description.references | Vogel, K., Weise, L., Schröter, K., & Thieken, A. H. (2018). Identifying Driving Factors in Flood‐Damaging Processes Using Graphical Models. Water Resources Research, 54(11), 8864-8889. doi:10.1029/2018wr022858 | es_ES |
dc.description.references | Wang, W.-C., Chau, K.-W., Cheng, C.-T., & Qiu, L. (2009). A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series. Journal of Hydrology, 374(3-4), 294-306. doi:10.1016/j.jhydrol.2009.06.019 | es_ES |
dc.description.references | Wasko, C., & Sharma, A. (2015). Steeper temporal distribution of rain intensity at higher temperatures within Australian storms. Nature Geoscience, 8(7), 527-529. doi:10.1038/ngeo2456 | es_ES |
dc.description.references | Wei, S., Zuo, D., & Song, J. (2012). Improving prediction accuracy of river discharge time series using a Wavelet-NAR artificial neural network. Journal of Hydroinformatics, 14(4), 974-991. doi:10.2166/hydro.2012.143 | es_ES |
dc.description.references | WIKLE, C. K., BERLINER, L. M., & CRESSIE, N. (1998). Environmental and Ecological Statistics, 5(2), 117-154. doi:10.1023/a:1009662704779 | es_ES |
dc.description.references | Yang, T., Asanjan, A. A., Faridzad, M., Hayatbini, N., Gao, X., & Sorooshian, S. (2017). An enhanced artificial neural network with a shuffled complex evolutionary global optimization with principal component analysis. Information Sciences, 418-419, 302-316. doi:10.1016/j.ins.2017.08.003 | es_ES |
dc.description.references | Yang, T., Asanjan, A. A., Welles, E., Gao, X., Sorooshian, S., & Liu, X. (2017). Developing reservoir monthly inflow forecasts using artificial intelligence and climate phenomenon information. Water Resources Research, 53(4), 2786-2812. doi:10.1002/2017wr020482 | es_ES |
dc.description.references | Yang, T., Gao, X., Sorooshian, S., & Li, X. (2016). Simulating California reservoir operation using the classification and regression-tree algorithm combined with a shuffled cross-validation scheme. Water Resources Research, 52(3), 1626-1651. doi:10.1002/2015wr017394 | es_ES |
dc.description.references | Zazo, S., Macian-Sorribes, H., Sena-Fael, C.M., Martín-Casado, A.M., Molina, J.L., Pulido-Velazquez, M., 2019. Qualitative approach for assessing runoff temporal dependence through geometrical symmetr. (Contributed Paper). Proceedings Internacional Congress on Engineering. Engineering for Evolution (ICEUBI2019). 27–29 November 2019, Covilhã, Portugal. | es_ES |
dc.subject.ods | 06.- Garantizar la disponibilidad y la gestión sostenible del agua y el saneamiento para todos | es_ES |
dc.subject.ods | 13.- Tomar medidas urgentes para combatir el cambio climático y sus efectos | es_ES |