- -

Analysis of spatio-temporal dependence of in flow time series through Bayesian causal modelling

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Analysis of spatio-temporal dependence of in flow time series through Bayesian causal modelling

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Macian-Sorribes, Hector es_ES
dc.contributor.author Molina González, José Luis es_ES
dc.contributor.author Zazo-Del Dedo, Santiago es_ES
dc.contributor.author Pulido-Velazquez, M. es_ES
dc.date.accessioned 2021-05-13T03:31:37Z
dc.date.available 2021-05-13T03:31:37Z
dc.date.issued 2021-06 es_ES
dc.identifier.issn 0022-1694 es_ES
dc.identifier.uri http://hdl.handle.net/10251/166256
dc.description.abstract [EN] This paper aims to assess fully the spatio-temporal dependence dimensions of inflow across two adjacent and parallel basins and among different time steps through Causality. This is addressed from the perspective of Causal Reasoning, supported by Bayesian modelling, under a novel framework named Bayesian Causal Modelling (BCM). This is applied, through a "concept-proof", to the Jucar River Basin (the second largest basin of Eastern Spain, characterized by long and severe drought conditions). In this ¿concept-proof¿ a double goal is evaluated; first dedicated to a lumped analysis of dependence and second a specific one over dry periods focused on time-horizon of the Jucar basin typical drought (3 years). These challenges comprise the development of two fully connected Bayesian Networks (BNs), one for each challenge populated/trained from historical-inflow records. BNs were designed at a season-scale and consequently, time was upscaled and grouped into Irrigation and Non-Irrigation periods, according to Jucar River Basin Authority operational practices. Results achieved showed that BCM framework satisfactorily captured the spatio-temporal dependencies of systems. Furthermore, BCM is able to answer to some key questions over interdependencies between adjacent and parallel subbasins. Those questions may comprise, the amount of spatial dependences among time series, the temporarily conditionality among subbasins and the spatio-temporal dependence among basins. This provides a relevant insight on the intrinsic spatio-temporal dependence structure of inflow time series in complex basins systems. This approach could be very valuable for water resources planning and management, due to its application power for predicting extreme events (e.g. droughts) as well as improving and optimizing the reservoirs operation rules. es_ES
dc.description.sponsorship This work was supported by the by the IMPADAPT project (CGL2013-48424-C2-1-R) with Spanish MINECO (Ministerio de Economía y Competitividad) and European FEDER funds; and the European Union's Horizon 2020 research and innovation programme under the IMPREX project (GA 641.811). es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Journal of Hydrology es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Causality es_ES
dc.subject Causal reasoning es_ES
dc.subject Bayesian spatio-temporal dependence es_ES
dc.subject Stochastic hydrology es_ES
dc.subject Jucar river basin es_ES
dc.subject Historical inflow time series es_ES
dc.subject.classification INGENIERIA HIDRAULICA es_ES
dc.title Analysis of spatio-temporal dependence of in flow time series through Bayesian causal modelling es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.jhydrol.2020.125722 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/641811/EU/IMproving PRedictions and management of hydrological EXtremes/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CGL2013-48424-C2-1-R/ES/ADAPTACION AL CAMBIO GLOBAL EN SISTEMAS DE RECURSOS HIDRICOS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient es_ES
dc.description.bibliographicCitation Macian-Sorribes, H.; Molina González, JL.; Zazo-Del Dedo, S.; Pulido-Velazquez, M. (2021). Analysis of spatio-temporal dependence of in flow time series through Bayesian causal modelling. Journal of Hydrology. 597:1-14. https://doi.org/10.1016/j.jhydrol.2020.125722 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.jhydrol.2020.125722 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 14 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 597 es_ES
dc.relation.pasarela S\425096 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Allan, R. P., & Soden, B. J. (2008). Atmospheric Warming and the Amplification of Precipitation Extremes. Science, 321(5895), 1481-1484. doi:10.1126/science.1160787 es_ES
dc.description.references Bayes, T., 1763. An essay towards solving a problem in the doctrine of chances. Philos. Trans. Roy. Soc. Lond. 53, 370–418. es_ES
dc.description.references Chang, B., Guan, J., & Aral, M. M. (2015). Scientific Discourse: Climate Change and Sea-Level Rise. Journal of Hydrologic Engineering, 20(1). doi:10.1061/(asce)he.1943-5584.0000860 es_ES
dc.description.references CHJ, 2006. Mapa piezométrico general de la confederación hidrográfica del Júcar. In “Comprobación y evaluación en la Cuenca Piloto del río Júcar de las Guías desarrolladas en el marco de la Estrategia común para la implementación de la Directiva Marco del Agua (in S. Valencia). es_ES
dc.description.references CHJ, 2007. Plan Especial de Alerta y Eventual Sequia en la Confederación Hidrográfica del Júcar (in Spanish). Valencia. es_ES
dc.description.references CHJ, 2015. Plan Hidrológico de la Demarcación Hidrográfica del Júcar. Valencia. es_ES
dc.description.references CHJ, 2020. Sistema de Información del Agua (SIA) de la Confederación Hidrográfica del Júcar.Red Piezométrica Operativa. es_ES
dc.description.references Dehghani, M., Saghafian, B., & Zargar, M. (2019). Probabilistic hydrological drought index forecasting based on meteorological drought index using Archimedean copulas. Hydrology Research, 50(5), 1230-1250. doi:10.2166/nh.2019.051 es_ES
dc.description.references De Michele, C. (2003). A Generalized Pareto intensity-duration model of storm rainfall exploiting 2-Copulas. Journal of Geophysical Research, 108(D2). doi:10.1029/2002jd002534 es_ES
dc.description.references Donat, M. G., Lowry, A. L., Alexander, L. V., O’Gorman, P. A., & Maher, N. (2016). More extreme precipitation in the world’s dry and wet regions. Nature Climate Change, 6(5), 508-513. doi:10.1038/nclimate2941 es_ES
dc.description.references Eum, H.-I., Gupta, A., & Dibike, Y. (2020). Effects of univariate and multivariate statistical downscaling methods on climatic and hydrologic indicators for Alberta, Canada. Journal of Hydrology, 588, 125065. doi:10.1016/j.jhydrol.2020.125065 es_ES
dc.description.references Estrela, M. J., Pe�arrocha, D., & Mill�n, M. (2000). Multi-annual drought episodes in the Mediterranean (Valencia region) from 1950-1996. A spatio-temporal analysis. International Journal of Climatology, 20(13), 1599-1618. doi:10.1002/1097-0088(20001115)20:13<1599::aid-joc559>3.0.co;2-q es_ES
dc.description.references Freire-González, J., Decker, C., & Hall, J. W. (2017). The Economic Impacts of Droughts: A Framework for Analysis. Ecological Economics, 132, 196-204. doi:10.1016/j.ecolecon.2016.11.005 es_ES
dc.description.references Gil, M., Garrido, A., & Gómez-Ramos, A. (2011). Economic analysis of drought risk: An application for irrigated agriculture in Spain. Agricultural Water Management, 98(5), 823-833. doi:10.1016/j.agwat.2010.12.008 es_ES
dc.description.references Hao, Z., & Singh, V. P. (2016). Review of dependence modeling in hydrology and water resources. Progress in Physical Geography: Earth and Environment, 40(4), 549-578. doi:10.1177/0309133316632460 es_ES
dc.description.references Hejazi, M. I., & Cai, X. (2011). Building more realistic reservoir optimization models using data mining – A case study of Shelbyville Reservoir. Advances in Water Resources, 34(6), 701-717. doi:10.1016/j.advwatres.2011.03.001 es_ES
dc.description.references Hurst, H. E. (1951). Long-Term Storage Capacity of Reservoirs. Transactions of the American Society of Civil Engineers, 116(1), 770-799. doi:10.1061/taceat.0006518 es_ES
dc.description.references IGME, 2020a. Map of Permeabilities of Spain scale 1/1000.000. https://igme.maps.arcgis.com/home/webmap/viewer.html?webmap=da8eb570845b41bbb5548c8266eaed0d (Accessed 01.03.20). es_ES
dc.description.references IGME, 2020b. Hydrogeological map of Spain scale 1/1000.000. https://igme.maps.arcgis.com/home/item.html?id=036292dc5b8946bd979a7dc47d2f8561 (Accessed 01.03.20). es_ES
dc.description.references Jain, A., & Kumar, A. M. (2007). Hybrid neural network models for hydrologic time series forecasting. Applied Soft Computing, 7(2), 585-592. doi:10.1016/j.asoc.2006.03.002 es_ES
dc.description.references Jia, Q. M., Li, Y. P., Li, Y. F., & Huang, G. H. (2020). Analyzing variation of inflow from the Syr Darya to the Aral Sea: A Bayesian-neural-network-based factorial analysis method. Journal of Hydrology, 587, 124976. doi:10.1016/j.jhydrol.2020.124976 es_ES
dc.description.references Jyrkama, M. I., & Sykes, J. F. (2007). The impact of climate change on spatially varying groundwater recharge in the grand river watershed (Ontario). Journal of Hydrology, 338(3-4), 237-250. doi:10.1016/j.jhydrol.2007.02.036 es_ES
dc.description.references Kahil, M. T., Dinar, A., & Albiac, J. (2015). Modeling water scarcity and droughts for policy adaptation to climate change in arid and semiarid regions. Journal of Hydrology, 522, 95-109. doi:10.1016/j.jhydrol.2014.12.042 es_ES
dc.description.references Kalra, A., Li, L., Li, X., & Ahmad, S. (2013). Improving Streamflow Forecast Lead Time Using Oceanic-Atmospheric Oscillations for Kaidu River Basin, Xinjiang, China. Journal of Hydrologic Engineering, 18(8), 1031-1040. doi:10.1061/(asce)he.1943-5584.0000707 es_ES
dc.description.references Kim, K., Lee, S., & Jin, Y. (2018). Forecasting Quarterly Inflow to Reservoirs Combining a Copula-Based Bayesian Network Method with Drought Forecasting. Water, 10(2), 233. doi:10.3390/w10020233 es_ES
dc.description.references Kousari, M. R., Hosseini, M. E., Ahani, H., & Hakimelahi, H. (2015). Introducing an operational method to forecast long-term regional drought based on the application of artificial intelligence capabilities. Theoretical and Applied Climatology, 127(1-2), 361-380. doi:10.1007/s00704-015-1624-6 es_ES
dc.description.references Lappenschaar, M., Hommersom, A., Lucas, P.J.F., 2012. Qualitative chain graphs and their use in medicine. Proceedings of the Sixth European Workshop on Probabilistic Graphical Models. Proceedings of the Sixth European Workshop on Probabilistic Graphical Models, Granada, Spain, 2012, pp. 179–185. es_ES
dc.description.references Li, H., Wang, D., Singh, V. P., Wang, Y., Wu, J., Wu, J., … Zhang, J. (2019). Non-stationary frequency analysis of annual extreme rainfall volume and intensity using Archimedean copulas: A case study in eastern China. Journal of Hydrology, 571, 114-131. doi:10.1016/j.jhydrol.2019.01.054 es_ES
dc.description.references Lima, A. R., Cannon, A. J., & Hsieh, W. W. (2016). Forecasting daily streamflow using online sequential extreme learning machines. Journal of Hydrology, 537, 431-443. doi:10.1016/j.jhydrol.2016.03.017 es_ES
dc.description.references Lopez-Nicolas, A., Pulido-Velazquez, M., & Macian-Sorribes, H. (2017). Economic risk assessment of drought impacts on irrigated agriculture. Journal of Hydrology, 550, 580-589. doi:10.1016/j.jhydrol.2017.05.004 es_ES
dc.description.references Madsen, A. L., Lang, M., Kjærulff, U. B., & Jensen, F. (2003). The Hugin Tool for Learning Bayesian Networks. Symbolic and Quantitative Approaches to Reasoning with Uncertainty, 594-605. doi:10.1007/978-3-540-45062-7_49 es_ES
dc.description.references Marcos, P., Lopez-Nicolas, A., Pulido-Velazquez, M., 2017. Analysis of climate change impact on meteorological and hydrological droughts through relative standardized indices. EGUGA, 1391. es_ES
dc.description.references Marcos-Garcia, P., Lopez-Nicolas, A., & Pulido-Velazquez, M. (2017). Combined use of relative drought indices to analyze climate change impact on meteorological and hydrological droughts in a Mediterranean basin. Journal of Hydrology, 554, 292-305. doi:10.1016/j.jhydrol.2017.09.028 es_ES
dc.description.references Mishra, A. K., & Desai, V. R. (2005). Drought forecasting using stochastic models. Stochastic Environmental Research and Risk Assessment, 19(5), 326-339. doi:10.1007/s00477-005-0238-4 es_ES
dc.description.references Mishra, A. K., & Singh, V. P. (2010). A review of drought concepts. Journal of Hydrology, 391(1-2), 202-216. doi:10.1016/j.jhydrol.2010.07.012 es_ES
dc.description.references Mishra, A. K., & Singh, V. P. (2011). Drought modeling – A review. Journal of Hydrology, 403(1-2), 157-175. doi:10.1016/j.jhydrol.2011.03.049 es_ES
dc.description.references Molina, J.-L., & Zazo, S. (2018). Assessment of Temporally Conditioned Runoff Fractions in Unregulated Rivers. Journal of Hydrologic Engineering, 23(5), 04018015. doi:10.1061/(asce)he.1943-5584.0001645 es_ES
dc.description.references Molina, J.-L., Zazo, S., & Martín, A.-M. (2019). Causal Reasoning: Towards Dynamic Predictive Models for Runoff Temporal Behavior of High Dependence Rivers. Water, 11(5), 877. doi:10.3390/w11050877 es_ES
dc.description.references Molina, J.-L., Zazo, S., Martín-Casado, A.-M., & Patino-Alonso, M.-C. (2020). Rivers’ Temporal Sustainability through the Evaluation of Predictive Runoff Methods. Sustainability, 12(5), 1720. doi:10.3390/su12051720 es_ES
dc.description.references Ochoa-Rivera, J. C. (2008). Prospecting droughts with stochastic artificial neural networks. Journal of Hydrology, 352(1-2), 174-180. doi:10.1016/j.jhydrol.2008.01.006 es_ES
dc.description.references Pearl, J., 2014. Graphical models for probabilistic and causal reasoning. In: Gonzalez, T., Diaz-Herrera, J., Tucker, A. (Eds.), Computing Handbook, Third Edition: Computer Science and Software Engineering, Chapman & Hall/CRC, Boca Raton, Florida, USA. es_ES
dc.description.references Peng, T., Zhou, J., Zhang, C., & Fu, W. (2017). Streamflow Forecasting Using Empirical Wavelet Transform and Artificial Neural Networks. Water, 9(6), 406. doi:10.3390/w9060406 es_ES
dc.description.references Roozbahani, A., Ebrahimi, E., & Banihabib, M. E. (2018). A Framework for Ground Water Management Based on Bayesian Network and MCDM Techniques. Water Resources Management, 32(15), 4985-5005. doi:10.1007/s11269-018-2118-y es_ES
dc.description.references Ropero, R. F., Nicholson, A. E., Aguilera, P. A., & Rumí, R. (2018). Learning and inference methodologies for hybrid dynamic Bayesian networks: a case study for a water reservoir system in Andalusia, Spain. Stochastic Environmental Research and Risk Assessment, 32(11), 3117-3135. doi:10.1007/s00477-018-1566-5 es_ES
dc.description.references Said, A. (2006). The Implementation of a Bayesian Network for Watershed Management Decisions. Water Resources Management, 20(4), 591-605. doi:10.1007/s11269-006-3088-z es_ES
dc.description.references Saghafian, B., & Sanginabadi, H. (2020). Multivariate groundwater drought analysis using copulas. Hydrology Research, 51(4), 666-685. doi:10.2166/nh.2020.131 es_ES
dc.description.references SEE, L., & OPENSHAW, S. (2000). A hybrid multi-model approach to river level forecasting. Hydrological Sciences Journal, 45(4), 523-536. doi:10.1080/02626660009492354 es_ES
dc.description.references Trenberth, K. (2011). Changes in precipitation with climate change. Climate Research, 47(1), 123-138. doi:10.3354/cr00953 es_ES
dc.description.references Tsoukalas, I., Efstratiadis, A., & Makropoulos, C. (2019). Building a puzzle to solve a riddle: A multi-scale disaggregation approach for multivariate stochastic processes with any marginal distribution and correlation structure. Journal of Hydrology, 575, 354-380. doi:10.1016/j.jhydrol.2019.05.017 es_ES
dc.description.references Vicente-Serrano, S. M., & Cuadrat-Prats, J. M. (2006). Trends in drought intensity and variability in the middle Ebro valley (NE of the Iberian peninsula) during the second half of the twentieth century. Theoretical and Applied Climatology, 88(3-4), 247-258. doi:10.1007/s00704-006-0236-6 es_ES
dc.description.references Vogel, K., Riggelsen, C., Korup, O., & Scherbaum, F. (2014). Bayesian network learning for natural hazard analyses. Natural Hazards and Earth System Sciences, 14(9), 2605-2626. doi:10.5194/nhess-14-2605-2014 es_ES
dc.description.references Vogel, K., Weise, L., Schröter, K., & Thieken, A. H. (2018). Identifying Driving Factors in Flood‐Damaging Processes Using Graphical Models. Water Resources Research, 54(11), 8864-8889. doi:10.1029/2018wr022858 es_ES
dc.description.references Wang, W.-C., Chau, K.-W., Cheng, C.-T., & Qiu, L. (2009). A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series. Journal of Hydrology, 374(3-4), 294-306. doi:10.1016/j.jhydrol.2009.06.019 es_ES
dc.description.references Wasko, C., & Sharma, A. (2015). Steeper temporal distribution of rain intensity at higher temperatures within Australian storms. Nature Geoscience, 8(7), 527-529. doi:10.1038/ngeo2456 es_ES
dc.description.references Wei, S., Zuo, D., & Song, J. (2012). Improving prediction accuracy of river discharge time series using a Wavelet-NAR artificial neural network. Journal of Hydroinformatics, 14(4), 974-991. doi:10.2166/hydro.2012.143 es_ES
dc.description.references WIKLE, C. K., BERLINER, L. M., & CRESSIE, N. (1998). Environmental and Ecological Statistics, 5(2), 117-154. doi:10.1023/a:1009662704779 es_ES
dc.description.references Yang, T., Asanjan, A. A., Faridzad, M., Hayatbini, N., Gao, X., & Sorooshian, S. (2017). An enhanced artificial neural network with a shuffled complex evolutionary global optimization with principal component analysis. Information Sciences, 418-419, 302-316. doi:10.1016/j.ins.2017.08.003 es_ES
dc.description.references Yang, T., Asanjan, A. A., Welles, E., Gao, X., Sorooshian, S., & Liu, X. (2017). Developing reservoir monthly inflow forecasts using artificial intelligence and climate phenomenon information. Water Resources Research, 53(4), 2786-2812. doi:10.1002/2017wr020482 es_ES
dc.description.references Yang, T., Gao, X., Sorooshian, S., & Li, X. (2016). Simulating California reservoir operation using the classification and regression-tree algorithm combined with a shuffled cross-validation scheme. Water Resources Research, 52(3), 1626-1651. doi:10.1002/2015wr017394 es_ES
dc.description.references Zazo, S., Macian-Sorribes, H., Sena-Fael, C.M., Martín-Casado, A.M., Molina, J.L., Pulido-Velazquez, M., 2019. Qualitative approach for assessing runoff temporal dependence through geometrical symmetr. (Contributed Paper). Proceedings Internacional Congress on Engineering. Engineering for Evolution (ICEUBI2019). 27–29 November 2019, Covilhã, Portugal. es_ES
dc.subject.ods 06.- Garantizar la disponibilidad y la gestión sostenible del agua y el saneamiento para todos es_ES
dc.subject.ods 13.- Tomar medidas urgentes para combatir el cambio climático y sus efectos es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem