- -

Analysis of spatio-temporal dependence of in flow time series through Bayesian causal modelling

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Analysis of spatio-temporal dependence of in flow time series through Bayesian causal modelling

Mostrar el registro completo del ítem

Macian-Sorribes, H.; Molina González, JL.; Zazo-Del Dedo, S.; Pulido-Velazquez, M. (2021). Analysis of spatio-temporal dependence of in flow time series through Bayesian causal modelling. Journal of Hydrology. 597:1-14. https://doi.org/10.1016/j.jhydrol.2020.125722

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/166256

Ficheros en el ítem

Metadatos del ítem

Título: Analysis of spatio-temporal dependence of in flow time series through Bayesian causal modelling
Autor: Macian-Sorribes, Hector Molina González, José Luis Zazo-Del Dedo, Santiago Pulido-Velazquez, M.
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient
Fecha difusión:
Resumen:
[EN] This paper aims to assess fully the spatio-temporal dependence dimensions of inflow across two adjacent and parallel basins and among different time steps through Causality. This is addressed from the perspective of ...[+]
Palabras clave: Causality , Causal reasoning , Bayesian spatio-temporal dependence , Stochastic hydrology , Jucar river basin , Historical inflow time series
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Journal of Hydrology. (issn: 0022-1694 )
DOI: 10.1016/j.jhydrol.2020.125722
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.jhydrol.2020.125722
Código del Proyecto:
info:eu-repo/grantAgreement/EC/H2020/641811/EU/IMproving PRedictions and management of hydrological EXtremes/
info:eu-repo/grantAgreement/MINECO//CGL2013-48424-C2-1-R/ES/ADAPTACION AL CAMBIO GLOBAL EN SISTEMAS DE RECURSOS HIDRICOS/
Agradecimientos:
This work was supported by the by the IMPADAPT project (CGL2013-48424-C2-1-R) with Spanish MINECO (Ministerio de Economía y Competitividad) and European FEDER funds; and the European Union's Horizon 2020 research and ...[+]
Tipo: Artículo

References

Allan, R. P., & Soden, B. J. (2008). Atmospheric Warming and the Amplification of Precipitation Extremes. Science, 321(5895), 1481-1484. doi:10.1126/science.1160787

Bayes, T., 1763. An essay towards solving a problem in the doctrine of chances. Philos. Trans. Roy. Soc. Lond. 53, 370–418.

Chang, B., Guan, J., & Aral, M. M. (2015). Scientific Discourse: Climate Change and Sea-Level Rise. Journal of Hydrologic Engineering, 20(1). doi:10.1061/(asce)he.1943-5584.0000860 [+]
Allan, R. P., & Soden, B. J. (2008). Atmospheric Warming and the Amplification of Precipitation Extremes. Science, 321(5895), 1481-1484. doi:10.1126/science.1160787

Bayes, T., 1763. An essay towards solving a problem in the doctrine of chances. Philos. Trans. Roy. Soc. Lond. 53, 370–418.

Chang, B., Guan, J., & Aral, M. M. (2015). Scientific Discourse: Climate Change and Sea-Level Rise. Journal of Hydrologic Engineering, 20(1). doi:10.1061/(asce)he.1943-5584.0000860

CHJ, 2006. Mapa piezométrico general de la confederación hidrográfica del Júcar. In “Comprobación y evaluación en la Cuenca Piloto del río Júcar de las Guías desarrolladas en el marco de la Estrategia común para la implementación de la Directiva Marco del Agua (in S. Valencia).

CHJ, 2007. Plan Especial de Alerta y Eventual Sequia en la Confederación Hidrográfica del Júcar (in Spanish). Valencia.

CHJ, 2015. Plan Hidrológico de la Demarcación Hidrográfica del Júcar. Valencia.

CHJ, 2020. Sistema de Información del Agua (SIA) de la Confederación Hidrográfica del Júcar.Red Piezométrica Operativa.

Dehghani, M., Saghafian, B., & Zargar, M. (2019). Probabilistic hydrological drought index forecasting based on meteorological drought index using Archimedean copulas. Hydrology Research, 50(5), 1230-1250. doi:10.2166/nh.2019.051

De Michele, C. (2003). A Generalized Pareto intensity-duration model of storm rainfall exploiting 2-Copulas. Journal of Geophysical Research, 108(D2). doi:10.1029/2002jd002534

Donat, M. G., Lowry, A. L., Alexander, L. V., O’Gorman, P. A., & Maher, N. (2016). More extreme precipitation in the world’s dry and wet regions. Nature Climate Change, 6(5), 508-513. doi:10.1038/nclimate2941

Eum, H.-I., Gupta, A., & Dibike, Y. (2020). Effects of univariate and multivariate statistical downscaling methods on climatic and hydrologic indicators for Alberta, Canada. Journal of Hydrology, 588, 125065. doi:10.1016/j.jhydrol.2020.125065

Estrela, M. J., Pe�arrocha, D., & Mill�n, M. (2000). Multi-annual drought episodes in the Mediterranean (Valencia region) from 1950-1996. A spatio-temporal analysis. International Journal of Climatology, 20(13), 1599-1618. doi:10.1002/1097-0088(20001115)20:13<1599::aid-joc559>3.0.co;2-q

Freire-González, J., Decker, C., & Hall, J. W. (2017). The Economic Impacts of Droughts: A Framework for Analysis. Ecological Economics, 132, 196-204. doi:10.1016/j.ecolecon.2016.11.005

Gil, M., Garrido, A., & Gómez-Ramos, A. (2011). Economic analysis of drought risk: An application for irrigated agriculture in Spain. Agricultural Water Management, 98(5), 823-833. doi:10.1016/j.agwat.2010.12.008

Hao, Z., & Singh, V. P. (2016). Review of dependence modeling in hydrology and water resources. Progress in Physical Geography: Earth and Environment, 40(4), 549-578. doi:10.1177/0309133316632460

Hejazi, M. I., & Cai, X. (2011). Building more realistic reservoir optimization models using data mining – A case study of Shelbyville Reservoir. Advances in Water Resources, 34(6), 701-717. doi:10.1016/j.advwatres.2011.03.001

Hurst, H. E. (1951). Long-Term Storage Capacity of Reservoirs. Transactions of the American Society of Civil Engineers, 116(1), 770-799. doi:10.1061/taceat.0006518

IGME, 2020a. Map of Permeabilities of Spain scale 1/1000.000. https://igme.maps.arcgis.com/home/webmap/viewer.html?webmap=da8eb570845b41bbb5548c8266eaed0d (Accessed 01.03.20).

IGME, 2020b. Hydrogeological map of Spain scale 1/1000.000. https://igme.maps.arcgis.com/home/item.html?id=036292dc5b8946bd979a7dc47d2f8561 (Accessed 01.03.20).

Jain, A., & Kumar, A. M. (2007). Hybrid neural network models for hydrologic time series forecasting. Applied Soft Computing, 7(2), 585-592. doi:10.1016/j.asoc.2006.03.002

Jia, Q. M., Li, Y. P., Li, Y. F., & Huang, G. H. (2020). Analyzing variation of inflow from the Syr Darya to the Aral Sea: A Bayesian-neural-network-based factorial analysis method. Journal of Hydrology, 587, 124976. doi:10.1016/j.jhydrol.2020.124976

Jyrkama, M. I., & Sykes, J. F. (2007). The impact of climate change on spatially varying groundwater recharge in the grand river watershed (Ontario). Journal of Hydrology, 338(3-4), 237-250. doi:10.1016/j.jhydrol.2007.02.036

Kahil, M. T., Dinar, A., & Albiac, J. (2015). Modeling water scarcity and droughts for policy adaptation to climate change in arid and semiarid regions. Journal of Hydrology, 522, 95-109. doi:10.1016/j.jhydrol.2014.12.042

Kalra, A., Li, L., Li, X., & Ahmad, S. (2013). Improving Streamflow Forecast Lead Time Using Oceanic-Atmospheric Oscillations for Kaidu River Basin, Xinjiang, China. Journal of Hydrologic Engineering, 18(8), 1031-1040. doi:10.1061/(asce)he.1943-5584.0000707

Kim, K., Lee, S., & Jin, Y. (2018). Forecasting Quarterly Inflow to Reservoirs Combining a Copula-Based Bayesian Network Method with Drought Forecasting. Water, 10(2), 233. doi:10.3390/w10020233

Kousari, M. R., Hosseini, M. E., Ahani, H., & Hakimelahi, H. (2015). Introducing an operational method to forecast long-term regional drought based on the application of artificial intelligence capabilities. Theoretical and Applied Climatology, 127(1-2), 361-380. doi:10.1007/s00704-015-1624-6

Lappenschaar, M., Hommersom, A., Lucas, P.J.F., 2012. Qualitative chain graphs and their use in medicine. Proceedings of the Sixth European Workshop on Probabilistic Graphical Models. Proceedings of the Sixth European Workshop on Probabilistic Graphical Models, Granada, Spain, 2012, pp. 179–185.

Li, H., Wang, D., Singh, V. P., Wang, Y., Wu, J., Wu, J., … Zhang, J. (2019). Non-stationary frequency analysis of annual extreme rainfall volume and intensity using Archimedean copulas: A case study in eastern China. Journal of Hydrology, 571, 114-131. doi:10.1016/j.jhydrol.2019.01.054

Lima, A. R., Cannon, A. J., & Hsieh, W. W. (2016). Forecasting daily streamflow using online sequential extreme learning machines. Journal of Hydrology, 537, 431-443. doi:10.1016/j.jhydrol.2016.03.017

Lopez-Nicolas, A., Pulido-Velazquez, M., & Macian-Sorribes, H. (2017). Economic risk assessment of drought impacts on irrigated agriculture. Journal of Hydrology, 550, 580-589. doi:10.1016/j.jhydrol.2017.05.004

Madsen, A. L., Lang, M., Kjærulff, U. B., & Jensen, F. (2003). The Hugin Tool for Learning Bayesian Networks. Symbolic and Quantitative Approaches to Reasoning with Uncertainty, 594-605. doi:10.1007/978-3-540-45062-7_49

Marcos, P., Lopez-Nicolas, A., Pulido-Velazquez, M., 2017. Analysis of climate change impact on meteorological and hydrological droughts through relative standardized indices. EGUGA, 1391.

Marcos-Garcia, P., Lopez-Nicolas, A., & Pulido-Velazquez, M. (2017). Combined use of relative drought indices to analyze climate change impact on meteorological and hydrological droughts in a Mediterranean basin. Journal of Hydrology, 554, 292-305. doi:10.1016/j.jhydrol.2017.09.028

Mishra, A. K., & Desai, V. R. (2005). Drought forecasting using stochastic models. Stochastic Environmental Research and Risk Assessment, 19(5), 326-339. doi:10.1007/s00477-005-0238-4

Mishra, A. K., & Singh, V. P. (2010). A review of drought concepts. Journal of Hydrology, 391(1-2), 202-216. doi:10.1016/j.jhydrol.2010.07.012

Mishra, A. K., & Singh, V. P. (2011). Drought modeling – A review. Journal of Hydrology, 403(1-2), 157-175. doi:10.1016/j.jhydrol.2011.03.049

Molina, J.-L., & Zazo, S. (2018). Assessment of Temporally Conditioned Runoff Fractions in Unregulated Rivers. Journal of Hydrologic Engineering, 23(5), 04018015. doi:10.1061/(asce)he.1943-5584.0001645

Molina, J.-L., Zazo, S., & Martín, A.-M. (2019). Causal Reasoning: Towards Dynamic Predictive Models for Runoff Temporal Behavior of High Dependence Rivers. Water, 11(5), 877. doi:10.3390/w11050877

Molina, J.-L., Zazo, S., Martín-Casado, A.-M., & Patino-Alonso, M.-C. (2020). Rivers’ Temporal Sustainability through the Evaluation of Predictive Runoff Methods. Sustainability, 12(5), 1720. doi:10.3390/su12051720

Ochoa-Rivera, J. C. (2008). Prospecting droughts with stochastic artificial neural networks. Journal of Hydrology, 352(1-2), 174-180. doi:10.1016/j.jhydrol.2008.01.006

Pearl, J., 2014. Graphical models for probabilistic and causal reasoning. In: Gonzalez, T., Diaz-Herrera, J., Tucker, A. (Eds.), Computing Handbook, Third Edition: Computer Science and Software Engineering, Chapman & Hall/CRC, Boca Raton, Florida, USA.

Peng, T., Zhou, J., Zhang, C., & Fu, W. (2017). Streamflow Forecasting Using Empirical Wavelet Transform and Artificial Neural Networks. Water, 9(6), 406. doi:10.3390/w9060406

Roozbahani, A., Ebrahimi, E., & Banihabib, M. E. (2018). A Framework for Ground Water Management Based on Bayesian Network and MCDM Techniques. Water Resources Management, 32(15), 4985-5005. doi:10.1007/s11269-018-2118-y

Ropero, R. F., Nicholson, A. E., Aguilera, P. A., & Rumí, R. (2018). Learning and inference methodologies for hybrid dynamic Bayesian networks: a case study for a water reservoir system in Andalusia, Spain. Stochastic Environmental Research and Risk Assessment, 32(11), 3117-3135. doi:10.1007/s00477-018-1566-5

Said, A. (2006). The Implementation of a Bayesian Network for Watershed Management Decisions. Water Resources Management, 20(4), 591-605. doi:10.1007/s11269-006-3088-z

Saghafian, B., & Sanginabadi, H. (2020). Multivariate groundwater drought analysis using copulas. Hydrology Research, 51(4), 666-685. doi:10.2166/nh.2020.131

SEE, L., & OPENSHAW, S. (2000). A hybrid multi-model approach to river level forecasting. Hydrological Sciences Journal, 45(4), 523-536. doi:10.1080/02626660009492354

Trenberth, K. (2011). Changes in precipitation with climate change. Climate Research, 47(1), 123-138. doi:10.3354/cr00953

Tsoukalas, I., Efstratiadis, A., & Makropoulos, C. (2019). Building a puzzle to solve a riddle: A multi-scale disaggregation approach for multivariate stochastic processes with any marginal distribution and correlation structure. Journal of Hydrology, 575, 354-380. doi:10.1016/j.jhydrol.2019.05.017

Vicente-Serrano, S. M., & Cuadrat-Prats, J. M. (2006). Trends in drought intensity and variability in the middle Ebro valley (NE of the Iberian peninsula) during the second half of the twentieth century. Theoretical and Applied Climatology, 88(3-4), 247-258. doi:10.1007/s00704-006-0236-6

Vogel, K., Riggelsen, C., Korup, O., & Scherbaum, F. (2014). Bayesian network learning for natural hazard analyses. Natural Hazards and Earth System Sciences, 14(9), 2605-2626. doi:10.5194/nhess-14-2605-2014

Vogel, K., Weise, L., Schröter, K., & Thieken, A. H. (2018). Identifying Driving Factors in Flood‐Damaging Processes Using Graphical Models. Water Resources Research, 54(11), 8864-8889. doi:10.1029/2018wr022858

Wang, W.-C., Chau, K.-W., Cheng, C.-T., & Qiu, L. (2009). A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series. Journal of Hydrology, 374(3-4), 294-306. doi:10.1016/j.jhydrol.2009.06.019

Wasko, C., & Sharma, A. (2015). Steeper temporal distribution of rain intensity at higher temperatures within Australian storms. Nature Geoscience, 8(7), 527-529. doi:10.1038/ngeo2456

Wei, S., Zuo, D., & Song, J. (2012). Improving prediction accuracy of river discharge time series using a Wavelet-NAR artificial neural network. Journal of Hydroinformatics, 14(4), 974-991. doi:10.2166/hydro.2012.143

WIKLE, C. K., BERLINER, L. M., & CRESSIE, N. (1998). Environmental and Ecological Statistics, 5(2), 117-154. doi:10.1023/a:1009662704779

Yang, T., Asanjan, A. A., Faridzad, M., Hayatbini, N., Gao, X., & Sorooshian, S. (2017). An enhanced artificial neural network with a shuffled complex evolutionary global optimization with principal component analysis. Information Sciences, 418-419, 302-316. doi:10.1016/j.ins.2017.08.003

Yang, T., Asanjan, A. A., Welles, E., Gao, X., Sorooshian, S., & Liu, X. (2017). Developing reservoir monthly inflow forecasts using artificial intelligence and climate phenomenon information. Water Resources Research, 53(4), 2786-2812. doi:10.1002/2017wr020482

Yang, T., Gao, X., Sorooshian, S., & Li, X. (2016). Simulating California reservoir operation using the classification and regression-tree algorithm combined with a shuffled cross-validation scheme. Water Resources Research, 52(3), 1626-1651. doi:10.1002/2015wr017394

Zazo, S., Macian-Sorribes, H., Sena-Fael, C.M., Martín-Casado, A.M., Molina, J.L., Pulido-Velazquez, M., 2019. Qualitative approach for assessing runoff temporal dependence through geometrical symmetr. (Contributed Paper). Proceedings Internacional Congress on Engineering. Engineering for Evolution (ICEUBI2019). 27–29 November 2019, Covilhã, Portugal.

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem