- -

Effectiveness of flip teaching on engineering students' performance in the physics lab

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Effectiveness of flip teaching on engineering students' performance in the physics lab

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Gómez-Tejedor, José-Antonio es_ES
dc.contributor.author Vidaurre, Ana es_ES
dc.contributor.author Tort-Ausina, Isabel es_ES
dc.contributor.author Molina Mateo, José es_ES
dc.contributor.author Serrano, María-Antonia es_ES
dc.contributor.author Meseguer Dueñas, José María es_ES
dc.contributor.author Martínez Sala, Rosa María es_ES
dc.contributor.author Quiles Casado, Susana De La Salud es_ES
dc.contributor.author Riera Guasp, Jaime es_ES
dc.date.accessioned 2021-05-13T03:31:51Z
dc.date.available 2021-05-13T03:31:51Z
dc.date.issued 2020-01 es_ES
dc.identifier.issn 0360-1315 es_ES
dc.identifier.uri http://hdl.handle.net/10251/166259
dc.description.abstract [EN] The progressive introduction of the flip teaching (FT) instructional model into higher education has accelerated in recent years. The FT methodology seems to be especially suitable for laboratory practice sessions: before the lab session the students are given documents and videos that explain the theoretical contents and the experimental procedure. When this material is studied in advance, the practice session can be devoted to the discussion, clarification and practical application of the acquired knowledge. This paper describes the effect of the FT methodology on the students¿ academic performance when it was applied to the laboratory practice in two subjects, Physics and Electricity, of a technical degree. The laboratory and final grades of these subjects were compared in four consecutive years. The characteristics of all four years were quite similar, except that the traditional teaching method (TM) was used in two, while FT was applied in the other two. The statistical analysis shows that the academic results of the students were better in both subjects under FT than those obtained using TM, and that the difference was statistically significant. es_ES
dc.description.sponsorship This work was supported by the Universitat Politecnica de Valencia [Project PIME/2018/B25 Convocatoria de Proyectos de Innovacion y Convergencia de la UPV]. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Computers & Education es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Adult learning es_ES
dc.subject Distributed learning environments es_ES
dc.subject Improving classroom teaching es_ES
dc.subject Multimedia/hypermedia systems es_ES
dc.subject Teaching/learning strategies es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Effectiveness of flip teaching on engineering students' performance in the physics lab es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.compedu.2019.103708 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PIME%2F2018%2FB25/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.description.bibliographicCitation Gómez-Tejedor, J.; Vidaurre, A.; Tort-Ausina, I.; Molina Mateo, J.; Serrano, M.; Meseguer Dueñas, JM.; Martínez Sala, RM.... (2020). Effectiveness of flip teaching on engineering students' performance in the physics lab. Computers & Education. 144:1-11. https://doi.org/10.1016/j.compedu.2019.103708 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.compedu.2019.103708 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 11 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 144 es_ES
dc.relation.pasarela S\394057 es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references Akçayır, G., & Akçayır, M. (2018). The flipped classroom: A review of its advantages and challenges. Computers & Education, 126, 334-345. doi:10.1016/j.compedu.2018.07.021 es_ES
dc.description.references Ardid, M., Gómez-Tejedor, J. A., Meseguer-Dueñas, J. M., Riera, J., & Vidaurre, A. (2015). Online exams for blended assessment. Study of different application methodologies. Computers & Education, 81, 296-303. doi:10.1016/j.compedu.2014.10.010 es_ES
dc.description.references Aşıksoy, G., & Özdamlı, F. (2016). Flipped Classroom adapted to the ARCS Model of Motivation and applied to a Physics Course. EURASIA Journal of Mathematics, Science and Technology Education, 12(6). doi:10.12973/eurasia.2016.1251a es_ES
dc.description.references Baepler, P., Walker, J. D., & Driessen, M. (2014). It’s not about seat time: Blending, flipping, and efficiency in active learning classrooms. Computers & Education, 78, 227-236. doi:10.1016/j.compedu.2014.06.006 es_ES
dc.description.references Bao, L. (2006). Theoretical comparisons of average normalized gain calculations. American Journal of Physics, 74(10), 917-922. doi:10.1119/1.2213632 es_ES
dc.description.references Chang, S.-C., & Hwang, G.-J. (2018). Impacts of an augmented reality-based flipped learning guiding approach on students’ scientific project performance and perceptions. Computers & Education, 125, 226-239. doi:10.1016/j.compedu.2018.06.007 es_ES
dc.description.references Chen, Y., Wang, Y., Kinshuk, & Chen, N.-S. (2014). Is FLIP enough? Or should we use the FLIPPED model instead? Computers & Education, 79, 16-27. doi:10.1016/j.compedu.2014.07.004 es_ES
dc.description.references Coletta, V. P., & Phillips, J. A. (2005). Interpreting FCI scores: Normalized gain, preinstruction scores, and scientific reasoning ability. American Journal of Physics, 73(12), 1172-1182. doi:10.1119/1.2117109 es_ES
dc.description.references Deslauriers, L., Schelew, E., & Wieman, C. (2011). Improved Learning in a Large-Enrollment Physics Class. Science, 332(6031), 862-864. doi:10.1126/science.1201783 es_ES
dc.description.references Garrison, D. R., & Vaughan, N. D. (2013). Institutional change and leadership associated with blended learning innovation: Two case studies. The Internet and Higher Education, 18, 24-28. doi:10.1016/j.iheduc.2012.09.001 es_ES
dc.description.references Hake, R. R. (1998). Interactive-engagement versus traditional methods: A six-thousand-student survey of mechanics test data for introductory physics courses. American Journal of Physics, 66(1), 64-74. doi:10.1119/1.18809 es_ES
dc.description.references Hung, H.-T. (2014). Flipping the classroom for English language learners to foster active learning. Computer Assisted Language Learning, 28(1), 81-96. doi:10.1080/09588221.2014.967701 es_ES
dc.description.references Hung, M.-L., & Chou, C. (2015). Students’ perceptions of instructors’ roles in blended and online learning environments: A comparative study. Computers & Education, 81, 315-325. doi:10.1016/j.compedu.2014.10.022 es_ES
dc.description.references Jensen, J. L., Holt, E. A., Sowards, J. B., Heath Ogden, T., & West, R. E. (2018). Investigating Strategies for Pre-Class Content Learning in a Flipped Classroom. Journal of Science Education and Technology, 27(6), 523-535. doi:10.1007/s10956-018-9740-6 es_ES
dc.description.references Jensen, J. L., Kummer, T. A., & Godoy, P. D. d. M. (2015). Improvements from a Flipped Classroom May Simply Be the Fruits of Active Learning. CBE—Life Sciences Education, 14(1), ar5. doi:10.1187/cbe.14-08-0129 es_ES
dc.description.references Jovanovic, J., Mirriahi, N., Gašević, D., Dawson, S., & Pardo, A. (2019). Predictive power of regularity of pre-class activities in a flipped classroom. Computers & Education, 134, 156-168. doi:10.1016/j.compedu.2019.02.011 es_ES
dc.description.references Kim, M. K., Kim, S. M., Khera, O., & Getman, J. (2014). The experience of three flipped classrooms in an urban university: an exploration of design principles. The Internet and Higher Education, 22, 37-50. doi:10.1016/j.iheduc.2014.04.003 es_ES
dc.description.references Kong, S. C. (2014). Developing information literacy and critical thinking skills through domain knowledge learning in digital classrooms: An experience of practicing flipped classroom strategy. Computers & Education, 78, 160-173. doi:10.1016/j.compedu.2014.05.009 es_ES
dc.description.references Kong, S. C. (2015). An experience of a three-year study on the development of critical thinking skills in flipped secondary classrooms with pedagogical and technological support. Computers & Education, 89, 16-31. doi:10.1016/j.compedu.2015.08.017 es_ES
dc.description.references Lage, M. J., Platt, G. J., & Treglia, M. (2000). Inverting the Classroom: A Gateway to Creating an Inclusive Learning Environment. The Journal of Economic Education, 31(1), 30-43. doi:10.1080/00220480009596759 es_ES
dc.description.references Lo, C. K., Lie, C. W., & Hew, K. F. (2018). Applying «First Principles of Instruction» as a design theory of the flipped classroom: Findings from a collective study of four secondary school subjects. Computers & Education, 118, 150-165. doi:10.1016/j.compedu.2017.12.003 es_ES
dc.description.references Marx, J. D., & Cummings, K. (2007). Normalized change. American Journal of Physics, 75(1), 87-91. doi:10.1119/1.2372468 es_ES
dc.description.references Merrill, M. D. (2002). First principles of instruction. Educational Technology Research and Development, 50(3), 43-59. doi:10.1007/bf02505024 es_ES
dc.description.references Missildine, K., Fountain, R., Summers, L., & Gosselin, K. (2013). Flipping the Classroom to Improve Student Performance and Satisfaction. Journal of Nursing Education, 52(10), 597-599. doi:10.3928/01484834-20130919-03 es_ES
dc.description.references Nissen, J. M., Talbot, R. M., Nasim Thompson, A., & Van Dusen, B. (2018). Comparison of normalized gain and Cohen’sdfor analyzing gains on concept inventories. Physical Review Physics Education Research, 14(1). doi:10.1103/physrevphyseducres.14.010115 es_ES
dc.description.references Nouri, J. (2016). The flipped classroom: for active, effective and increased learning – especially for low achievers. International Journal of Educational Technology in Higher Education, 13(1). doi:10.1186/s41239-016-0032-z es_ES
dc.description.references O’Flaherty, J., & Phillips, C. (2015). The use of flipped classrooms in higher education: A scoping review. The Internet and Higher Education, 25, 85-95. doi:10.1016/j.iheduc.2015.02.002 es_ES
dc.description.references Pierce, R., & Fox, J. (2012). Vodcasts and Active-Learning Exercises in a «Flipped Classroom» Model of a Renal Pharmacotherapy Module. American Journal of Pharmaceutical Education, 76(10), 196. doi:10.5688/ajpe7610196 es_ES
dc.description.references Rienties, B., Kaper, W., Struyven, K., Tempelaar, D., van Gastel, L., Vrancken, S., … Virgailaitė-Mečkauskaitė, E. (2011). A review of the role of information communication technology and course design in transitional education practices. Interactive Learning Environments, 20(6), 563-581. doi:10.1080/10494820.2010.542757 es_ES
dc.description.references Roach, T. (2014). Student perceptions toward flipped learning: New methods to increase interaction and active learning in economics. International Review of Economics Education, 17, 74-84. doi:10.1016/j.iree.2014.08.003 es_ES
dc.description.references Şengel, E. (2016). To FLIP or not to FLIP: Comparative case study in higher education in Turkey. Computers in Human Behavior, 64, 547-555. doi:10.1016/j.chb.2016.07.034 es_ES
dc.description.references Sun, Z., Xie, K., & Anderman, L. H. (2018). The role of self-regulated learning in students’ success in flipped undergraduate math courses. The Internet and Higher Education, 36, 41-53. doi:10.1016/j.iheduc.2017.09.003 es_ES
dc.description.references Thai, N. T. T., De Wever, B., & Valcke, M. (2017). The impact of a flipped classroom design on learning performance in higher education: Looking for the best «blend» of lectures and guiding questions with feedback. Computers & Education, 107, 113-126. doi:10.1016/j.compedu.2017.01.003 es_ES
dc.description.references Tomas, L., Evans, N. (Snowy), Doyle, T., & Skamp, K. (2019). Are first year students ready for a flipped classroom? A case for a flipped learning continuum. International Journal of Educational Technology in Higher Education, 16(1). doi:10.1186/s41239-019-0135-4 es_ES
dc.description.references Von Korff, J., Archibeque, B., Gomez, K. A., Heckendorf, T., McKagan, S. B., Sayre, E. C., … Sorell, L. (2016). Secondary analysis of teaching methods in introductory physics: A 50 k-student study. American Journal of Physics, 84(12), 969-974. doi:10.1119/1.4964354 es_ES
dc.description.references Vo, H. M., Zhu, C., & Diep, N. A. (2017). The effect of blended learning on student performance at course-level in higher education: A meta-analysis. Studies in Educational Evaluation, 53, 17-28. doi:10.1016/j.stueduc.2017.01.002 es_ES
dc.description.references Willoughby, S. D., & Metz, A. (2009). Exploring gender differences with different gain calculations in astronomy and biology. American Journal of Physics, 77(7), 651-657. doi:10.1119/1.3133087 es_ES
dc.description.references Zacharia, Z. C., & Olympiou, G. (2011). Physical versus virtual manipulative experimentation in physics learning. Learning and Instruction, 21(3), 317-331. doi:10.1016/j.learninstruc.2010.03.001 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem