- -

Electrospun Antimicrobial Films of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Containing Eugenol Essential Oil Encapsulated in Mesoporous Silica Nanoparticles

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by


Electrospun Antimicrobial Films of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Containing Eugenol Essential Oil Encapsulated in Mesoporous Silica Nanoparticles

Show full item record

Meléndez-Rodríguez, B.; Figueroa-López, KJ.; Bernardos Bau, A.; Martínez-Máñez, R.; Cabedo Mas, L.; Torres-Giner, S.; Lagaron Cabello, JM. (2019). Electrospun Antimicrobial Films of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Containing Eugenol Essential Oil Encapsulated in Mesoporous Silica Nanoparticles. Nanomaterials. 9(2):1-23. https://doi.org/10.3390/nano9020227

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/166260

Files in this item

Item Metadata

Title: Electrospun Antimicrobial Films of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Containing Eugenol Essential Oil Encapsulated in Mesoporous Silica Nanoparticles
Author: Meléndez-Rodríguez, Beatriz Figueroa-López, Kelly Johana Bernardos Bau, Andrea Martínez-Máñez, Ramón CABEDO MAS, LUIS Torres-Giner, S. LAGARON CABELLO, JOSE MARIA
UPV Unit: Universitat Politècnica de València. Departamento de Química - Departament de Química
Universitat Politècnica de València. Instituto Universitario de Ingeniería de Alimentos para el Desarrollo - Institut Universitari d'Enginyeria d'Aliments per al Desenvolupament
Issued date:
[EN] The main goal of this study was to develop poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) films with long-term antimicrobial capacity of interest in food packaging applications. To this end, eugenol was first ...[+]
Subjects: PHBV , MCM-41 , Eugenol , Antimicrobial properties , Active packaging
Copyrigths: Reconocimiento (by)
Nanomaterials. (eissn: 2079-4991 )
DOI: 10.3390/nano9020227
Publisher version: https://doi.org/10.3390/nano9020227
Project ID:
info:eu-repo/grantAgreement/EC/H2020/730349/EU/REsources from URban BIo-waSte/
info:eu-repo/grantAgreement/EC/H2020/730349/EU/REsources from URban BIo-waSte/
This research was supported by the Ministry of Science, Innovation, and Universities (MICIU) program numbers AGL2015-63855-C2-1-R and MAT2015-64139-C4-1-R, by the Generalitat Valenciana (GVA) PROMETEO/2018/024 program, and ...[+]
Type: Artículo


Torres-Giner, S., Montanes, N., Fombuena, V., Boronat, T., & Sanchez-Nacher, L. (2016). Preparation and characterization of compression-molded green composite sheets made of poly(3-hydroxybutyrate) reinforced with long pita fibers. Advances in Polymer Technology, 37(5), 1305-1315. doi:10.1002/adv.21789

Reddy, C. S. ., Ghai, R., Rashmi, & Kalia, V. . (2003). Polyhydroxyalkanoates: an overview. Bioresource Technology, 87(2), 137-146. doi:10.1016/s0960-8524(02)00212-2

Keshavarz, T., & Roy, I. (2010). Polyhydroxyalkanoates: bioplastics with a green agenda. Current Opinion in Microbiology, 13(3), 321-326. doi:10.1016/j.mib.2010.02.006 [+]
Torres-Giner, S., Montanes, N., Fombuena, V., Boronat, T., & Sanchez-Nacher, L. (2016). Preparation and characterization of compression-molded green composite sheets made of poly(3-hydroxybutyrate) reinforced with long pita fibers. Advances in Polymer Technology, 37(5), 1305-1315. doi:10.1002/adv.21789

Reddy, C. S. ., Ghai, R., Rashmi, & Kalia, V. . (2003). Polyhydroxyalkanoates: an overview. Bioresource Technology, 87(2), 137-146. doi:10.1016/s0960-8524(02)00212-2

Keshavarz, T., & Roy, I. (2010). Polyhydroxyalkanoates: bioplastics with a green agenda. Current Opinion in Microbiology, 13(3), 321-326. doi:10.1016/j.mib.2010.02.006

Lee, S. Y. (1996). Plastic bacteria? Progress and prospects for polyhydroxyalkanoate production in bacteria. Trends in Biotechnology, 14(11), 431-438. doi:10.1016/0167-7799(96)10061-5

Choi, J., & Lee, S. Y. (1997). Process analysis and economic evaluation for Poly(3-hydroxybutyrate) production by fermentation. Bioprocess Engineering, 17(6), 335. doi:10.1007/s004490050394

Díez-Pascual, A. M., & Díez-Vicente, A. L. (2014). ZnO-Reinforced Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Bionanocomposites with Antimicrobial Function for Food Packaging. ACS Applied Materials & Interfaces, 6(12), 9822-9834. doi:10.1021/am502261e

Torres-Giner, S., Montanes, N., Boronat, T., Quiles-Carrillo, L., & Balart, R. (2016). Melt grafting of sepiolite nanoclay onto poly(3-hydroxybutyrate-co-4-hydroxybutyrate) by reactive extrusion with multi-functional epoxy-based styrene-acrylic oligomer. European Polymer Journal, 84, 693-707. doi:10.1016/j.eurpolymj.2016.09.057

Khosravi-Darani, K. (2015). Application of Poly(hydroxyalkanoate) In Food Packaging: Improvements by Nanotechnology. Chemical and Biochemical Engineering Quarterly, 29(2), 275-285. doi:10.15255/cabeq.2014.2260

Kulkarni, S. O., Kanekar, P. P., Jog, J. P., Patil, P. A., Nilegaonkar, S. S., Sarnaik, S. S., & Kshirsagar, P. R. (2011). Characterisation of copolymer, poly (hydroxybutyrate-co-hydroxyvalerate) (PHB-co-PHV) produced by Halomonas campisalis (MCM B-1027), its biodegradability and potential application. Bioresource Technology, 102(11), 6625-6628. doi:10.1016/j.biortech.2011.03.054

Keskin, G., Kızıl, G., Bechelany, M., Pochat-Bohatier, C., & Öner, M. (2017). Potential of polyhydroxyalkanoate (PHA) polymers family as substitutes of petroleum based polymers for packaging applications and solutions brought by their composites to form barrier materials. Pure and Applied Chemistry, 89(12), 1841-1848. doi:10.1515/pac-2017-0401

Philip, S., Keshavarz, T., & Roy, I. (2007). Polyhydroxyalkanoates: biodegradable polymers with a range of applications. Journal of Chemical Technology & Biotechnology, 82(3), 233-247. doi:10.1002/jctb.1667

Requena, R., Vargas, M., & Chiralt, A. (2017). Release kinetics of carvacrol and eugenol from poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) films for food packaging applications. European Polymer Journal, 92, 185-193. doi:10.1016/j.eurpolymj.2017.05.008

Torres-Giner, S., Hilliou, L., Melendez-Rodriguez, B., Figueroa-Lopez, K. J., Madalena, D., Cabedo, L., … Lagaron, J. M. (2018). Melt processability, characterization, and antibacterial activity of compression-molded green composite sheets made of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) reinforced with coconut fibers impregnated with oregano essential oil. Food Packaging and Shelf Life, 17, 39-49. doi:10.1016/j.fpsl.2018.05.002

Li, D., & Xia, Y. (2004). Electrospinning of Nanofibers: Reinventing the Wheel? Advanced Materials, 16(14), 1151-1170. doi:10.1002/adma.200400719

Torres-Giner, S., Pérez-Masiá, R., & Lagaron, J. M. (2016). A review on electrospun polymer nanostructures as advanced bioactive platforms. Polymer Engineering & Science, 56(5), 500-527. doi:10.1002/pen.24274

Torres-Giner, S., Wilkanowicz, S., Melendez-Rodriguez, B., & Lagaron, J. M. (2017). Nanoencapsulation of Aloe vera in Synthetic and Naturally Occurring Polymers by Electrohydrodynamic Processing of Interest in Food Technology and Bioactive Packaging. Journal of Agricultural and Food Chemistry, 65(22), 4439-4448. doi:10.1021/acs.jafc.7b01393

Spagnol, C., Fragal, E. H., Pereira, A. G. B., Nakamura, C. V., Muniz, E. C., Follmann, H. D. M., … Rubira, A. F. (2018). Cellulose nanowhiskers decorated with silver nanoparticles as an additive to antibacterial polymers membranes fabricated by electrospinning. Journal of Colloid and Interface Science, 531, 705-715. doi:10.1016/j.jcis.2018.07.096

Hu, M., Li, C., Li, X., Zhou, M., Sun, J., Sheng, F., … Lu, L. (2017). Zinc oxide/silver bimetallic nanoencapsulated in PVP/PCL nanofibres for improved antibacterial activity. Artificial Cells, Nanomedicine, and Biotechnology, 46(6), 1248-1257. doi:10.1080/21691401.2017.1366339

An, J., Zhang, H., Zhang, J., Zhao, Y., & Yuan, X. (2009). Preparation and antibacterial activity of electrospun chitosan/poly(ethylene oxide) membranes containing silver nanoparticles. Colloid and Polymer Science, 287(12), 1425-1434. doi:10.1007/s00396-009-2108-y

Castro-Mayorga, J., Fabra, M., Cabedo, L., & Lagaron, J. (2016). On the Use of the Electrospinning Coating Technique to Produce Antimicrobial Polyhydroxyalkanoate Materials Containing In Situ-Stabilized Silver Nanoparticles. Nanomaterials, 7(1), 4. doi:10.3390/nano7010004

Castro Mayorga, J. L., Fabra Rovira, M. J., Cabedo Mas, L., Sánchez Moragas, G., & Lagarón Cabello, J. M. (2017). Antimicrobial nanocomposites and electrospun coatings based on poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and copper oxide nanoparticles for active packaging and coating applications. Journal of Applied Polymer Science, 135(2), 45673. doi:10.1002/app.45673

Burt, S. (2004). Essential oils: their antibacterial properties and potential applications in foods—a review. International Journal of Food Microbiology, 94(3), 223-253. doi:10.1016/j.ijfoodmicro.2004.03.022

Lang, G., & Buchbauer, G. (2011). A review on recent research results (2008-2010) on essential oils as antimicrobials and antifungals. A review. Flavour and Fragrance Journal, 27(1), 13-39. doi:10.1002/ffj.2082

Da Silva, F. F. M., Monte, F. J. Q., de Lemos, T. L. G., do Nascimento, P. G. G., de Medeiros Costa, A. K., & de Paiva, L. M. M. (2018). Eugenol derivatives: synthesis, characterization, and evaluation of antibacterial and antioxidant activities. Chemistry Central Journal, 12(1). doi:10.1186/s13065-018-0407-4

Wieczyńska, J., & Cavoski, I. (2018). Antimicrobial, antioxidant and sensory features of eugenol, carvacrol and trans-anethole in active packaging for organic ready-to-eat iceberg lettuce. Food Chemistry, 259, 251-260. doi:10.1016/j.foodchem.2018.03.137

Majeed, H., Bian, Y.-Y., Ali, B., Jamil, A., Majeed, U., Khan, Q. F., … Fang, Z. (2015). Essential oil encapsulations: uses, procedures, and trends. RSC Advances, 5(72), 58449-58463. doi:10.1039/c5ra06556a

Kailasapathy, K. (2009). Encapsulation technologies for functional foods and nutraceutical product development. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 4(033). doi:10.1079/pavsnnr20094033

Kresge, C. T., Leonowicz, M. E., Roth, W. J., Vartuli, J. C., & Beck, J. S. (1992). Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, 359(6397), 710-712. doi:10.1038/359710a0

Vallet-Regi, M., Rámila, A., del Real, R. P., & Pérez-Pariente, J. (2000). A New Property of MCM-41:  Drug Delivery System. Chemistry of Materials, 13(2), 308-311. doi:10.1021/cm0011559

He, D., He, X., Wang, K., Zou, Z., Yang, X., & Li, X. (2014). Remote-Controlled Drug Release from Graphene Oxide-Capped Mesoporous Silica to Cancer Cells by Photoinduced pH-Jump Activation. Langmuir, 30(24), 7182-7189. doi:10.1021/la501075c

Muñoz, B., Rámila, A., Pérez-Pariente, J., Díaz, I., & Vallet-Regí, M. (2002). MCM-41 Organic Modification as Drug Delivery Rate Regulator. Chemistry of Materials, 15(2), 500-503. doi:10.1021/cm021217q

Bernardos, A., Marina, T., Žáček, P., Pérez-Esteve, É., Martínez-Mañez, R., Lhotka, M., … Klouček, P. (2014). Antifungal effect of essential oil components against Aspergillus niger when loaded into silica mesoporous supports. Journal of the Science of Food and Agriculture, 95(14), 2824-2831. doi:10.1002/jsfa.7022

Fan, J., Yu, C., Gao, F., Lei, J., Tian, B., Wang, L., … Zhao, D. (2003). Cubic Mesoporous Silica with Large Controllable Entrance Sizes and Advanced Adsorption Properties. Angewandte Chemie International Edition, 42(27), 3146-3150. doi:10.1002/anie.200351027

Ruiz-Rico, M., Fuentes, C., Pérez-Esteve, É., Jiménez-Belenguer, A. I., Quiles, A., Marcos, M. D., … Barat, J. M. (2015). Bactericidal activity of caprylic acid entrapped in mesoporous silica nanoparticles. Food Control, 56, 77-85. doi:10.1016/j.foodcont.2015.03.016

Janatova, A., Bernardos, A., Smid, J., Frankova, A., Lhotka, M., Kourimská, L., … Kloucek, P. (2015). Long-term antifungal activity of volatile essential oil components released from mesoporous silica materials. Industrial Crops and Products, 67, 216-220. doi:10.1016/j.indcrop.2015.01.019

Ribes, S., Ruiz-Rico, M., Pérez-Esteve, É., Fuentes, A., Talens, P., Martínez-Máñez, R., & Barat, J. M. (2017). Eugenol and thymol immobilised on mesoporous silica-based material as an innovative antifungal system: Application in strawberry jam. Food Control, 81, 181-188. doi:10.1016/j.foodcont.2017.06.006

Ruiz-Rico, M., Pérez-Esteve, É., Bernardos, A., Sancenón, F., Martínez-Máñez, R., Marcos, M. D., & Barat, J. M. (2017). Enhanced antimicrobial activity of essential oil components immobilized on silica particles. Food Chemistry, 233, 228-236. doi:10.1016/j.foodchem.2017.04.118

Popova, M., Lazarova, H., Trusheva, B., Popova, M., Bankova, V., Mihály, J., … Szegedi, Á. (2018). Nanostructured silver silica materials as potential propolis carriers. Microporous and Mesoporous Materials, 263, 28-33. doi:10.1016/j.micromeso.2017.11.043

Chatterjee, D., & Bhattacharjee, P. (2013). Comparative evaluation of the antioxidant efficacy of encapsulated and un-encapsulated eugenol-rich clove extracts in soybean oil: Shelf-life and frying stability of soybean oil. Journal of Food Engineering, 117(4), 545-550. doi:10.1016/j.jfoodeng.2012.11.016

Climent, E., Calero, P., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., & Soto, J. (2009). Selective Chromofluorogenic Sensing of Heparin by using Functionalised Silica Nanoparticles Containing Binding Sites and a Signalling Reporter. Chemistry - A European Journal, 15(8), 1816-1820. doi:10.1002/chem.200802074

Cherpinski, A., Torres-Giner, S., Vartiainen, J., Peresin, M. S., Lahtinen, P., & Lagaron, J. M. (2018). Improving the water resistance of nanocellulose-based films with polyhydroxyalkanoates processed by the electrospinning coating technique. Cellulose, 25(2), 1291-1307. doi:10.1007/s10570-018-1648-z

Torres-Giner, S., Torres, A., Ferrándiz, M., Fombuena, V., & Balart, R. (2017). Antimicrobial activity of metal cation-exchanged zeolites and their evaluation on injection-molded pieces of bio-based high-density polyethylene. Journal of Food Safety, 37(4), e12348. doi:10.1111/jfs.12348

Beck, J. S., Vartuli, J. C., Roth, W. J., Leonowicz, M. E., Kresge, C. T., Schmitt, K. D., … Schlenker, J. L. (1992). A new family of mesoporous molecular sieves prepared with liquid crystal templates. Journal of the American Chemical Society, 114(27), 10834-10843. doi:10.1021/ja00053a020

Alfredsson, V., Keung, M., Monnier, A., Stucky, G. D., Unger, K. K., & Schüth, F. (1994). High-resolution transmission electron microscopy of mesoporous MCM-41 type materials. J. Chem. Soc., Chem. Commun., (8), 921-922. doi:10.1039/c39940000921

Ravikovitch, P. I., Domhnaill, S. C. O., Neimark, A. V., Schueth, F., & Unger, K. K. (1995). Capillary Hysteresis in Nanopores: Theoretical and Experimental Studies of Nitrogen Adsorption on MCM-41. Langmuir, 11(12), 4765-4772. doi:10.1021/la00012a030

Sayed, E., Karavasili, C., Ruparelia, K., Haj-Ahmad, R., Charalambopoulou, G., Steriotis, T., … Ahmad, Z. (2018). Electrosprayed mesoporous particles for improved aqueous solubility of a poorly water soluble anticancer agent: in vitro and ex vivo evaluation. Journal of Controlled Release, 278, 142-155. doi:10.1016/j.jconrel.2018.03.031

Torres-Giner, S., & Lagaron, J. M. (2010). Zein-based ultrathin fibers containing ceramic nanofillers obtained by electrospinning. I. Morphology and thermal properties. Journal of Applied Polymer Science, n/a-n/a. doi:10.1002/app.32180

Torres-Giner, S., Martinez-Abad, A., & Lagaron, J. M. (2014). Zein-based ultrathin fibers containing ceramic nanofillers obtained by electrospinning. II. Mechanical properties, gas barrier, and sustained release capacity of biocide thymol in multilayer polylactide films. Journal of Applied Polymer Science, 131(18), n/a-n/a. doi:10.1002/app.40768

Cherpinski, A., Gozutok, M., Sasmazel, H., Torres-Giner, S., & Lagaron, J. (2018). Electrospun Oxygen Scavenging Films of Poly(3-hydroxybutyrate) Containing Palladium Nanoparticles for Active Packaging Applications. Nanomaterials, 8(7), 469. doi:10.3390/nano8070469

Cherpinski, A., Torres-Giner, S., Cabedo, L., & Lagaron, J. M. (2017). Post-processing optimization of electrospun submicron poly(3-hydroxybutyrate) fibers to obtain continuous films of interest in food packaging applications. Food Additives & Contaminants: Part A, 34(10), 1817-1830. doi:10.1080/19440049.2017.1355115

Melendez-Rodriguez, B., Castro-Mayorga, J. L., Reis, M. A. M., Sammon, C., Cabedo, L., Torres-Giner, S., & Lagaron, J. M. (2018). Preparation and Characterization of Electrospun Food Biopackaging Films of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Derived From Fruit Pulp Biowaste. Frontiers in Sustainable Food Systems, 2. doi:10.3389/fsufs.2018.00038

Muratore, F., Martini, R. E., & Barbosa, S. E. (2018). Bioactive paper by eugenol grafting onto cellulose. Effect of reaction variables. Food Packaging and Shelf Life, 15, 159-168. doi:10.1016/j.fpsl.2017.12.010

Torres-Giner, S., Montanes, N., Fenollar, O., García-Sanoguera, D., & Balart, R. (2016). Development and optimization of renewable vinyl plastisol/wood flour composites exposed to ultraviolet radiation. Materials & Design, 108, 648-658. doi:10.1016/j.matdes.2016.07.037

Fernandes Nassar, S., Dombre, C., Gastaldi, E., Touchaleaume, F., & Chalier, P. (2017). Soy protein isolate nanocomposite film enriched with eugenol, an antimicrobial agent: Interactions and properties. Journal of Applied Polymer Science, 135(10), 45941. doi:10.1002/app.45941

Narayanan, A., Neera, Mallesha, & Ramana, K. V. (2013). Synergized Antimicrobial Activity of Eugenol Incorporated Polyhydroxybutyrate Films Against Food Spoilage Microorganisms in Conjunction with Pediocin. Applied Biochemistry and Biotechnology, 170(6), 1379-1388. doi:10.1007/s12010-013-0267-2

Ju, C., Kim, T., & Kang, H. (2018). Renewable, Eugenol—Modified Polystyrene Layer for Liquid Crystal Orientation. Polymers, 10(2), 201. doi:10.3390/polym10020201

Loganathan, S., Jacob, J., Valapa, R. B., & Thomas, S. (2018). Influence of linear and branched amine functionalization in mesoporous silica on the thermal, mechanical and barrier properties of sustainable poly(lactic acid) biocomposite films. Polymer, 148, 149-157. doi:10.1016/j.polymer.2018.06.035

Garrido-Miranda, K. A., Rivas, B. L., Pérez -Rivera, M. A., Sanfuentes, E. A., & Peña-Farfal, C. (2018). Antioxidant and antifungal effects of eugenol incorporated in bionanocomposites of poly(3-hydroxybutyrate)-thermoplastic starch. LWT, 98, 260-267. doi:10.1016/j.lwt.2018.08.046

Woranuch, S., & Yoksan, R. (2013). Eugenol-loaded chitosan nanoparticles: II. Application in bio-based plastics for active packaging. Carbohydrate Polymers, 96(2), 586-592. doi:10.1016/j.carbpol.2012.09.099

Fang, Z., & Bhandari, B. (2010). Encapsulation of polyphenols – a review. Trends in Food Science & Technology, 21(10), 510-523. doi:10.1016/j.tifs.2010.08.003

Requena, R., Jiménez, A., Vargas, M., & Chiralt, A. (2016). Poly[(3-hydroxybutyrate)-co-(3-hydroxyvalerate)] active bilayer films obtained by compression moulding and applying essential oils at the interface. Polymer International, 65(8), 883-891. doi:10.1002/pi.5091

Rivero, S., García, M. A., & Pinotti, A. (2009). Composite and bi-layer films based on gelatin and chitosan. Journal of Food Engineering, 90(4), 531-539. doi:10.1016/j.jfoodeng.2008.07.021

Voon, H. C., Bhat, R., Easa, A. M., Liong, M. T., & Karim, A. A. (2010). Effect of Addition of Halloysite Nanoclay and SiO2 Nanoparticles on Barrier and Mechanical Properties of Bovine Gelatin Films. Food and Bioprocess Technology, 5(5), 1766-1774. doi:10.1007/s11947-010-0461-y

Jia, X., Li, Y., Cheng, Q., Zhang, S., & Zhang, B. (2007). Preparation and properties of poly(vinyl alcohol)/silica nanocomposites derived from copolymerization of vinyl silica nanoparticles and vinyl acetate. European Polymer Journal, 43(4), 1123-1131. doi:10.1016/j.eurpolymj.2007.01.019

Tang, S., Zou, P., Xiong, H., & Tang, H. (2008). Effect of nano-SiO2 on the performance of starch/polyvinyl alcohol blend films. Carbohydrate Polymers, 72(3), 521-526. doi:10.1016/j.carbpol.2007.09.019

Quiles-Carrillo, L., Montanes, N., Lagaron, J. M., Balart, R., & Torres-Giner, S. (2018). In Situ Compatibilization of Biopolymer Ternary Blends by Reactive Extrusion with Low-Functionality Epoxy-Based Styrene–Acrylic Oligomer. Journal of Polymers and the Environment, 27(1), 84-96. doi:10.1007/s10924-018-1324-2

Nielsen, L. E. (1967). Models for the Permeability of Filled Polymer Systems. Journal of Macromolecular Science: Part A - Chemistry, 1(5), 929-942. doi:10.1080/10601326708053745

Sanchez-Garcia, M. D., Gimenez, E., & Lagaron, J. M. (2008). Morphology and barrier properties of solvent cast composites of thermoplastic biopolymers and purified cellulose fibers. Carbohydrate Polymers, 71(2), 235-244. doi:10.1016/j.carbpol.2007.05.041

Sanchez-Garcia, M. D., Gimenez, E., & Lagaron, J. M. (2007). Novel PET Nanocomposites of Interest in Food Packaging Applications and Comparative Barrier Performance With Biopolyester Nanocomposites. Journal of Plastic Film & Sheeting, 23(2), 133-148. doi:10.1177/8756087907083590

Hashemi Tabatabaei, R., Jafari, S. M., Mirzaei, H., Mohammadi Nafchi, A., & Dehnad, D. (2018). Preparation and characterization of nano-SiO2 reinforced gelatin-k-carrageenan biocomposites. International Journal of Biological Macromolecules, 111, 1091-1099. doi:10.1016/j.ijbiomac.2018.01.116

Hassannia-Kolaee, M., Khodaiyan, F., Pourahmad, R., & Shahabi-Ghahfarrokhi, I. (2016). Development of ecofriendly bionanocomposite: Whey protein isolate/pullulan films with nano-SiO 2. International Journal of Biological Macromolecules, 86, 139-144. doi:10.1016/j.ijbiomac.2016.01.032

Tongnuanchan, P., Benjakul, S., & Prodpran, T. (2012). Properties and antioxidant activity of fish skin gelatin film incorporated with citrus essential oils. Food Chemistry, 134(3), 1571-1579. doi:10.1016/j.foodchem.2012.03.094

Aguirre, A., Borneo, R., & León, A. E. (2013). Antimicrobial, mechanical and barrier properties of triticale protein films incorporated with oregano essential oil. Food Bioscience, 1, 2-9. doi:10.1016/j.fbio.2012.12.001

Atarés, L., De Jesús, C., Talens, P., & Chiralt, A. (2010). Characterization of SPI-based edible films incorporated with cinnamon or ginger essential oils. Journal of Food Engineering, 99(3), 384-391. doi:10.1016/j.jfoodeng.2010.03.004

Atarés, L., & Chiralt, A. (2016). Essential oils as additives in biodegradable films and coatings for active food packaging. Trends in Food Science & Technology, 48, 51-62. doi:10.1016/j.tifs.2015.12.001

Castro-Mayorga, J. L., Fabra, M. J., Pourrahimi, A. M., Olsson, R. T., & Lagaron, J. M. (2017). The impact of zinc oxide particle morphology as an antimicrobial and when incorporated in poly(3-hydroxybutyrate-co-3-hydroxyvalerate) films for food packaging and food contact surfaces applications. Food and Bioproducts Processing, 101, 32-44. doi:10.1016/j.fbp.2016.10.007

Figueroa-Lopez, K. J., Vicente, A. A., Reis, M. A. M., Torres-Giner, S., & Lagaron, J. M. (2019). Antimicrobial and Antioxidant Performance of Various Essential Oils and Natural Extracts and Their Incorporation into Biowaste Derived Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Layers Made from Electrospun Ultrathin Fibers. Nanomaterials, 9(2), 144. doi:10.3390/nano9020144

Li, Z., Zhou, P., Zhou, F., Zhao, Y., Ren, L., & Yuan, X. (2018). Antimicrobial eugenol-loaded electrospun membranes of poly(ε-caprolactone)/gelatin incorporated with REDV for vascular graft applications. Colloids and Surfaces B: Biointerfaces, 162, 335-344. doi:10.1016/j.colsurfb.2017.12.004

Park, S.-Y., Barton, M., & Pendleton, P. (2011). Mesoporous silica as a natural antimicrobial carrier. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 385(1-3), 256-261. doi:10.1016/j.colsurfa.2011.06.021




This item appears in the following Collection(s)

Show full item record