- -

Electrospun Antimicrobial Films of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Containing Eugenol Essential Oil Encapsulated in Mesoporous Silica Nanoparticles

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Electrospun Antimicrobial Films of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Containing Eugenol Essential Oil Encapsulated in Mesoporous Silica Nanoparticles

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Meléndez-Rodríguez, Beatriz es_ES
dc.contributor.author Figueroa-López, Kelly Johana es_ES
dc.contributor.author Bernardos Bau, Andrea es_ES
dc.contributor.author Martínez-Máñez, Ramón es_ES
dc.contributor.author CABEDO MAS, LUIS es_ES
dc.contributor.author Torres-Giner, S. es_ES
dc.contributor.author LAGARON CABELLO, JOSE MARIA es_ES
dc.date.accessioned 2021-05-13T03:31:53Z
dc.date.available 2021-05-13T03:31:53Z
dc.date.issued 2019-02-08 es_ES
dc.identifier.uri http://hdl.handle.net/10251/166260
dc.description.abstract [EN] The main goal of this study was to develop poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) films with long-term antimicrobial capacity of interest in food packaging applications. To this end, eugenol was first highly efficiently encapsulated at 50 wt.-% in the pores of mesoporous silica nanoparticles by vapor adsorption. The eugenol-containing nanoparticles were then loaded in the 2.5-20 wt.-% range into PHBV by electrospinning and the resultant electrospun composite fibers were annealed at 155 degrees C to produce continuous films. The characterization showed that the PHBV films filled with mesoporous silica nanoparticles containing eugenol present sufficient thermal resistance and enhanced mechanical strength and barrier performance to water vapor and limonene. The antimicrobial activity of the films was also evaluated against foodborne bacteria for 15 days in open vs. closed conditions in order to simulate real packaging conditions. The electrospun PHBV films with loadings above 10 wt.-% of mesoporous silica nanoparticles containing eugenol successfully inhibited the bacterial growth, whereas the active films stored in hermetically closed systems increased their antimicrobial activity after 15 days due to the volatile portion accumulated in the system's headspace and the sustained release capacity of the films. The resultant biopolymer films are, therefore, potential candidates to be applied in active food packaging applications to provide shelf life extension and food safety. es_ES
dc.description.sponsorship This research was supported by the Ministry of Science, Innovation, and Universities (MICIU) program numbers AGL2015-63855-C2-1-R and MAT2015-64139-C4-1-R, by the Generalitat Valenciana (GVA) PROMETEO/2018/024 program, and by the EU H2020 projects YPACK (reference number 773872) and ResUrbis (reference number 730349). B.M.-R. and S.T.-G. acknowledge MICIU for her FPI grant (BES-2016-077972) and his Juan de la Cierva - Incorporación contract (IJCI-2016-29675), respectively. K.J.F-L. also acknowledges GVA for her Santiago Grisolia grant (GRISOLIAP/2017/101). A.B. would also like to thank GVA (POSTD/2014/016) and MICIU for her Juan de la Cierva - Incorporación contract (IJCI-2014-21534). The authors also thank the Joint Unit in Polymers Technology between IATA¿CSIC and PIMA-Universitat Jaume I. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Nanomaterials es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject PHBV es_ES
dc.subject MCM-41 es_ES
dc.subject Eugenol es_ES
dc.subject Antimicrobial properties es_ES
dc.subject Active packaging es_ES
dc.subject.classification QUIMICA INORGANICA es_ES
dc.subject.classification CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA es_ES
dc.title Electrospun Antimicrobial Films of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Containing Eugenol Essential Oil Encapsulated in Mesoporous Silica Nanoparticles es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/nano9020227 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/730349/EU/REsources from URban BIo-waSte/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//IJCI-2016-29675/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/773872/EU/HIGH PERFORMANCE POLYHYDROXYALKANOATES BASED PACKAGING TO MINIMISE FOOD WASTE/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//AGL2015-63855-C2-1-R/ES/DESARROLLO DE UN CONCEPTO DE ENVASE MULTICAPA ALIMENTARIO DE ALTA BARRERA Y CON CARACTER ACTIVO Y BIOACTIVO DERIVADO DE SUBPRODUCTOS ALIMENTARIOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//GRISOLIAP%2F2017%2F101/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2015-64139-C4-1-R/ES/NANOMATERIALES INTELIGENTES, SONDAS Y DISPOSITIVOS PARA EL DESARROLLO INTEGRADO DE NUEVAS HERRAMIENTAS APLICADAS AL CAMPO BIOMEDICO/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2018%2F024/ES/Sistemas avanzados de liberación controlada/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//BES-2016-077972/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//APOSTD%2F2014%2F016/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//IJCI-2014-21534/ES/IJCI-2014-21534/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//AGL2015-70235-C2-2-R/ES/DESARROLLO DE SISTEMAS HIBRIDOS CON OPTIMIZACION DEL ANCLADO DE BIOMOLECULAS Y DISEÑADOS CON PROPIEDADES DE ENCAPSULACION Y LIBERACION CONTROLADA MEJORADAS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Ingeniería de Alimentos para el Desarrollo - Institut Universitari d'Enginyeria d'Aliments per al Desenvolupament es_ES
dc.description.bibliographicCitation Meléndez-Rodríguez, B.; Figueroa-López, KJ.; Bernardos Bau, A.; Martínez-Máñez, R.; Cabedo Mas, L.; Torres-Giner, S.; Lagaron Cabello, JM. (2019). Electrospun Antimicrobial Films of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Containing Eugenol Essential Oil Encapsulated in Mesoporous Silica Nanoparticles. Nanomaterials. 9(2):1-23. https://doi.org/10.3390/nano9020227 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/nano9020227 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 23 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 9 es_ES
dc.description.issue 2 es_ES
dc.identifier.eissn 2079-4991 es_ES
dc.identifier.pmid 30744000 es_ES
dc.identifier.pmcid PMC6409543 es_ES
dc.relation.pasarela S\379329 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Torres-Giner, S., Montanes, N., Fombuena, V., Boronat, T., & Sanchez-Nacher, L. (2016). Preparation and characterization of compression-molded green composite sheets made of poly(3-hydroxybutyrate) reinforced with long pita fibers. Advances in Polymer Technology, 37(5), 1305-1315. doi:10.1002/adv.21789 es_ES
dc.description.references Reddy, C. S. ., Ghai, R., Rashmi, & Kalia, V. . (2003). Polyhydroxyalkanoates: an overview. Bioresource Technology, 87(2), 137-146. doi:10.1016/s0960-8524(02)00212-2 es_ES
dc.description.references Keshavarz, T., & Roy, I. (2010). Polyhydroxyalkanoates: bioplastics with a green agenda. Current Opinion in Microbiology, 13(3), 321-326. doi:10.1016/j.mib.2010.02.006 es_ES
dc.description.references Lee, S. Y. (1996). Plastic bacteria? Progress and prospects for polyhydroxyalkanoate production in bacteria. Trends in Biotechnology, 14(11), 431-438. doi:10.1016/0167-7799(96)10061-5 es_ES
dc.description.references Choi, J., & Lee, S. Y. (1997). Process analysis and economic evaluation for Poly(3-hydroxybutyrate) production by fermentation. Bioprocess Engineering, 17(6), 335. doi:10.1007/s004490050394 es_ES
dc.description.references Díez-Pascual, A. M., & Díez-Vicente, A. L. (2014). ZnO-Reinforced Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Bionanocomposites with Antimicrobial Function for Food Packaging. ACS Applied Materials & Interfaces, 6(12), 9822-9834. doi:10.1021/am502261e es_ES
dc.description.references Torres-Giner, S., Montanes, N., Boronat, T., Quiles-Carrillo, L., & Balart, R. (2016). Melt grafting of sepiolite nanoclay onto poly(3-hydroxybutyrate-co-4-hydroxybutyrate) by reactive extrusion with multi-functional epoxy-based styrene-acrylic oligomer. European Polymer Journal, 84, 693-707. doi:10.1016/j.eurpolymj.2016.09.057 es_ES
dc.description.references Khosravi-Darani, K. (2015). Application of Poly(hydroxyalkanoate) In Food Packaging: Improvements by Nanotechnology. Chemical and Biochemical Engineering Quarterly, 29(2), 275-285. doi:10.15255/cabeq.2014.2260 es_ES
dc.description.references Kulkarni, S. O., Kanekar, P. P., Jog, J. P., Patil, P. A., Nilegaonkar, S. S., Sarnaik, S. S., & Kshirsagar, P. R. (2011). Characterisation of copolymer, poly (hydroxybutyrate-co-hydroxyvalerate) (PHB-co-PHV) produced by Halomonas campisalis (MCM B-1027), its biodegradability and potential application. Bioresource Technology, 102(11), 6625-6628. doi:10.1016/j.biortech.2011.03.054 es_ES
dc.description.references Keskin, G., Kızıl, G., Bechelany, M., Pochat-Bohatier, C., & Öner, M. (2017). Potential of polyhydroxyalkanoate (PHA) polymers family as substitutes of petroleum based polymers for packaging applications and solutions brought by their composites to form barrier materials. Pure and Applied Chemistry, 89(12), 1841-1848. doi:10.1515/pac-2017-0401 es_ES
dc.description.references Philip, S., Keshavarz, T., & Roy, I. (2007). Polyhydroxyalkanoates: biodegradable polymers with a range of applications. Journal of Chemical Technology & Biotechnology, 82(3), 233-247. doi:10.1002/jctb.1667 es_ES
dc.description.references Requena, R., Vargas, M., & Chiralt, A. (2017). Release kinetics of carvacrol and eugenol from poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) films for food packaging applications. European Polymer Journal, 92, 185-193. doi:10.1016/j.eurpolymj.2017.05.008 es_ES
dc.description.references Torres-Giner, S., Hilliou, L., Melendez-Rodriguez, B., Figueroa-Lopez, K. J., Madalena, D., Cabedo, L., … Lagaron, J. M. (2018). Melt processability, characterization, and antibacterial activity of compression-molded green composite sheets made of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) reinforced with coconut fibers impregnated with oregano essential oil. Food Packaging and Shelf Life, 17, 39-49. doi:10.1016/j.fpsl.2018.05.002 es_ES
dc.description.references Li, D., & Xia, Y. (2004). Electrospinning of Nanofibers: Reinventing the Wheel? Advanced Materials, 16(14), 1151-1170. doi:10.1002/adma.200400719 es_ES
dc.description.references Torres-Giner, S., Pérez-Masiá, R., & Lagaron, J. M. (2016). A review on electrospun polymer nanostructures as advanced bioactive platforms. Polymer Engineering & Science, 56(5), 500-527. doi:10.1002/pen.24274 es_ES
dc.description.references Torres-Giner, S., Wilkanowicz, S., Melendez-Rodriguez, B., & Lagaron, J. M. (2017). Nanoencapsulation of Aloe vera in Synthetic and Naturally Occurring Polymers by Electrohydrodynamic Processing of Interest in Food Technology and Bioactive Packaging. Journal of Agricultural and Food Chemistry, 65(22), 4439-4448. doi:10.1021/acs.jafc.7b01393 es_ES
dc.description.references Spagnol, C., Fragal, E. H., Pereira, A. G. B., Nakamura, C. V., Muniz, E. C., Follmann, H. D. M., … Rubira, A. F. (2018). Cellulose nanowhiskers decorated with silver nanoparticles as an additive to antibacterial polymers membranes fabricated by electrospinning. Journal of Colloid and Interface Science, 531, 705-715. doi:10.1016/j.jcis.2018.07.096 es_ES
dc.description.references Hu, M., Li, C., Li, X., Zhou, M., Sun, J., Sheng, F., … Lu, L. (2017). Zinc oxide/silver bimetallic nanoencapsulated in PVP/PCL nanofibres for improved antibacterial activity. Artificial Cells, Nanomedicine, and Biotechnology, 46(6), 1248-1257. doi:10.1080/21691401.2017.1366339 es_ES
dc.description.references An, J., Zhang, H., Zhang, J., Zhao, Y., & Yuan, X. (2009). Preparation and antibacterial activity of electrospun chitosan/poly(ethylene oxide) membranes containing silver nanoparticles. Colloid and Polymer Science, 287(12), 1425-1434. doi:10.1007/s00396-009-2108-y es_ES
dc.description.references Castro-Mayorga, J., Fabra, M., Cabedo, L., & Lagaron, J. (2016). On the Use of the Electrospinning Coating Technique to Produce Antimicrobial Polyhydroxyalkanoate Materials Containing In Situ-Stabilized Silver Nanoparticles. Nanomaterials, 7(1), 4. doi:10.3390/nano7010004 es_ES
dc.description.references Castro Mayorga, J. L., Fabra Rovira, M. J., Cabedo Mas, L., Sánchez Moragas, G., & Lagarón Cabello, J. M. (2017). Antimicrobial nanocomposites and electrospun coatings based on poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and copper oxide nanoparticles for active packaging and coating applications. Journal of Applied Polymer Science, 135(2), 45673. doi:10.1002/app.45673 es_ES
dc.description.references Burt, S. (2004). Essential oils: their antibacterial properties and potential applications in foods—a review. International Journal of Food Microbiology, 94(3), 223-253. doi:10.1016/j.ijfoodmicro.2004.03.022 es_ES
dc.description.references Lang, G., & Buchbauer, G. (2011). A review on recent research results (2008-2010) on essential oils as antimicrobials and antifungals. A review. Flavour and Fragrance Journal, 27(1), 13-39. doi:10.1002/ffj.2082 es_ES
dc.description.references Da Silva, F. F. M., Monte, F. J. Q., de Lemos, T. L. G., do Nascimento, P. G. G., de Medeiros Costa, A. K., & de Paiva, L. M. M. (2018). Eugenol derivatives: synthesis, characterization, and evaluation of antibacterial and antioxidant activities. Chemistry Central Journal, 12(1). doi:10.1186/s13065-018-0407-4 es_ES
dc.description.references Wieczyńska, J., & Cavoski, I. (2018). Antimicrobial, antioxidant and sensory features of eugenol, carvacrol and trans-anethole in active packaging for organic ready-to-eat iceberg lettuce. Food Chemistry, 259, 251-260. doi:10.1016/j.foodchem.2018.03.137 es_ES
dc.description.references Majeed, H., Bian, Y.-Y., Ali, B., Jamil, A., Majeed, U., Khan, Q. F., … Fang, Z. (2015). Essential oil encapsulations: uses, procedures, and trends. RSC Advances, 5(72), 58449-58463. doi:10.1039/c5ra06556a es_ES
dc.description.references Kailasapathy, K. (2009). Encapsulation technologies for functional foods and nutraceutical product development. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 4(033). doi:10.1079/pavsnnr20094033 es_ES
dc.description.references Kresge, C. T., Leonowicz, M. E., Roth, W. J., Vartuli, J. C., & Beck, J. S. (1992). Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, 359(6397), 710-712. doi:10.1038/359710a0 es_ES
dc.description.references Vallet-Regi, M., Rámila, A., del Real, R. P., & Pérez-Pariente, J. (2000). A New Property of MCM-41:  Drug Delivery System. Chemistry of Materials, 13(2), 308-311. doi:10.1021/cm0011559 es_ES
dc.description.references He, D., He, X., Wang, K., Zou, Z., Yang, X., & Li, X. (2014). Remote-Controlled Drug Release from Graphene Oxide-Capped Mesoporous Silica to Cancer Cells by Photoinduced pH-Jump Activation. Langmuir, 30(24), 7182-7189. doi:10.1021/la501075c es_ES
dc.description.references Muñoz, B., Rámila, A., Pérez-Pariente, J., Díaz, I., & Vallet-Regí, M. (2002). MCM-41 Organic Modification as Drug Delivery Rate Regulator. Chemistry of Materials, 15(2), 500-503. doi:10.1021/cm021217q es_ES
dc.description.references Bernardos, A., Marina, T., Žáček, P., Pérez-Esteve, É., Martínez-Mañez, R., Lhotka, M., … Klouček, P. (2014). Antifungal effect of essential oil components against Aspergillus niger when loaded into silica mesoporous supports. Journal of the Science of Food and Agriculture, 95(14), 2824-2831. doi:10.1002/jsfa.7022 es_ES
dc.description.references Fan, J., Yu, C., Gao, F., Lei, J., Tian, B., Wang, L., … Zhao, D. (2003). Cubic Mesoporous Silica with Large Controllable Entrance Sizes and Advanced Adsorption Properties. Angewandte Chemie International Edition, 42(27), 3146-3150. doi:10.1002/anie.200351027 es_ES
dc.description.references Ruiz-Rico, M., Fuentes, C., Pérez-Esteve, É., Jiménez-Belenguer, A. I., Quiles, A., Marcos, M. D., … Barat, J. M. (2015). Bactericidal activity of caprylic acid entrapped in mesoporous silica nanoparticles. Food Control, 56, 77-85. doi:10.1016/j.foodcont.2015.03.016 es_ES
dc.description.references Janatova, A., Bernardos, A., Smid, J., Frankova, A., Lhotka, M., Kourimská, L., … Kloucek, P. (2015). Long-term antifungal activity of volatile essential oil components released from mesoporous silica materials. Industrial Crops and Products, 67, 216-220. doi:10.1016/j.indcrop.2015.01.019 es_ES
dc.description.references Ribes, S., Ruiz-Rico, M., Pérez-Esteve, É., Fuentes, A., Talens, P., Martínez-Máñez, R., & Barat, J. M. (2017). Eugenol and thymol immobilised on mesoporous silica-based material as an innovative antifungal system: Application in strawberry jam. Food Control, 81, 181-188. doi:10.1016/j.foodcont.2017.06.006 es_ES
dc.description.references Ruiz-Rico, M., Pérez-Esteve, É., Bernardos, A., Sancenón, F., Martínez-Máñez, R., Marcos, M. D., & Barat, J. M. (2017). Enhanced antimicrobial activity of essential oil components immobilized on silica particles. Food Chemistry, 233, 228-236. doi:10.1016/j.foodchem.2017.04.118 es_ES
dc.description.references Popova, M., Lazarova, H., Trusheva, B., Popova, M., Bankova, V., Mihály, J., … Szegedi, Á. (2018). Nanostructured silver silica materials as potential propolis carriers. Microporous and Mesoporous Materials, 263, 28-33. doi:10.1016/j.micromeso.2017.11.043 es_ES
dc.description.references Chatterjee, D., & Bhattacharjee, P. (2013). Comparative evaluation of the antioxidant efficacy of encapsulated and un-encapsulated eugenol-rich clove extracts in soybean oil: Shelf-life and frying stability of soybean oil. Journal of Food Engineering, 117(4), 545-550. doi:10.1016/j.jfoodeng.2012.11.016 es_ES
dc.description.references Climent, E., Calero, P., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., & Soto, J. (2009). Selective Chromofluorogenic Sensing of Heparin by using Functionalised Silica Nanoparticles Containing Binding Sites and a Signalling Reporter. Chemistry - A European Journal, 15(8), 1816-1820. doi:10.1002/chem.200802074 es_ES
dc.description.references Cherpinski, A., Torres-Giner, S., Vartiainen, J., Peresin, M. S., Lahtinen, P., & Lagaron, J. M. (2018). Improving the water resistance of nanocellulose-based films with polyhydroxyalkanoates processed by the electrospinning coating technique. Cellulose, 25(2), 1291-1307. doi:10.1007/s10570-018-1648-z es_ES
dc.description.references Torres-Giner, S., Torres, A., Ferrándiz, M., Fombuena, V., & Balart, R. (2017). Antimicrobial activity of metal cation-exchanged zeolites and their evaluation on injection-molded pieces of bio-based high-density polyethylene. Journal of Food Safety, 37(4), e12348. doi:10.1111/jfs.12348 es_ES
dc.description.references Beck, J. S., Vartuli, J. C., Roth, W. J., Leonowicz, M. E., Kresge, C. T., Schmitt, K. D., … Schlenker, J. L. (1992). A new family of mesoporous molecular sieves prepared with liquid crystal templates. Journal of the American Chemical Society, 114(27), 10834-10843. doi:10.1021/ja00053a020 es_ES
dc.description.references Alfredsson, V., Keung, M., Monnier, A., Stucky, G. D., Unger, K. K., & Schüth, F. (1994). High-resolution transmission electron microscopy of mesoporous MCM-41 type materials. J. Chem. Soc., Chem. Commun., (8), 921-922. doi:10.1039/c39940000921 es_ES
dc.description.references Ravikovitch, P. I., Domhnaill, S. C. O., Neimark, A. V., Schueth, F., & Unger, K. K. (1995). Capillary Hysteresis in Nanopores: Theoretical and Experimental Studies of Nitrogen Adsorption on MCM-41. Langmuir, 11(12), 4765-4772. doi:10.1021/la00012a030 es_ES
dc.description.references Sayed, E., Karavasili, C., Ruparelia, K., Haj-Ahmad, R., Charalambopoulou, G., Steriotis, T., … Ahmad, Z. (2018). Electrosprayed mesoporous particles for improved aqueous solubility of a poorly water soluble anticancer agent: in vitro and ex vivo evaluation. Journal of Controlled Release, 278, 142-155. doi:10.1016/j.jconrel.2018.03.031 es_ES
dc.description.references Torres-Giner, S., & Lagaron, J. M. (2010). Zein-based ultrathin fibers containing ceramic nanofillers obtained by electrospinning. I. Morphology and thermal properties. Journal of Applied Polymer Science, n/a-n/a. doi:10.1002/app.32180 es_ES
dc.description.references Torres-Giner, S., Martinez-Abad, A., & Lagaron, J. M. (2014). Zein-based ultrathin fibers containing ceramic nanofillers obtained by electrospinning. II. Mechanical properties, gas barrier, and sustained release capacity of biocide thymol in multilayer polylactide films. Journal of Applied Polymer Science, 131(18), n/a-n/a. doi:10.1002/app.40768 es_ES
dc.description.references Cherpinski, A., Gozutok, M., Sasmazel, H., Torres-Giner, S., & Lagaron, J. (2018). Electrospun Oxygen Scavenging Films of Poly(3-hydroxybutyrate) Containing Palladium Nanoparticles for Active Packaging Applications. Nanomaterials, 8(7), 469. doi:10.3390/nano8070469 es_ES
dc.description.references Cherpinski, A., Torres-Giner, S., Cabedo, L., & Lagaron, J. M. (2017). Post-processing optimization of electrospun submicron poly(3-hydroxybutyrate) fibers to obtain continuous films of interest in food packaging applications. Food Additives & Contaminants: Part A, 34(10), 1817-1830. doi:10.1080/19440049.2017.1355115 es_ES
dc.description.references Melendez-Rodriguez, B., Castro-Mayorga, J. L., Reis, M. A. M., Sammon, C., Cabedo, L., Torres-Giner, S., & Lagaron, J. M. (2018). Preparation and Characterization of Electrospun Food Biopackaging Films of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Derived From Fruit Pulp Biowaste. Frontiers in Sustainable Food Systems, 2. doi:10.3389/fsufs.2018.00038 es_ES
dc.description.references Muratore, F., Martini, R. E., & Barbosa, S. E. (2018). Bioactive paper by eugenol grafting onto cellulose. Effect of reaction variables. Food Packaging and Shelf Life, 15, 159-168. doi:10.1016/j.fpsl.2017.12.010 es_ES
dc.description.references Torres-Giner, S., Montanes, N., Fenollar, O., García-Sanoguera, D., & Balart, R. (2016). Development and optimization of renewable vinyl plastisol/wood flour composites exposed to ultraviolet radiation. Materials & Design, 108, 648-658. doi:10.1016/j.matdes.2016.07.037 es_ES
dc.description.references Fernandes Nassar, S., Dombre, C., Gastaldi, E., Touchaleaume, F., & Chalier, P. (2017). Soy protein isolate nanocomposite film enriched with eugenol, an antimicrobial agent: Interactions and properties. Journal of Applied Polymer Science, 135(10), 45941. doi:10.1002/app.45941 es_ES
dc.description.references Narayanan, A., Neera, Mallesha, & Ramana, K. V. (2013). Synergized Antimicrobial Activity of Eugenol Incorporated Polyhydroxybutyrate Films Against Food Spoilage Microorganisms in Conjunction with Pediocin. Applied Biochemistry and Biotechnology, 170(6), 1379-1388. doi:10.1007/s12010-013-0267-2 es_ES
dc.description.references Ju, C., Kim, T., & Kang, H. (2018). Renewable, Eugenol—Modified Polystyrene Layer for Liquid Crystal Orientation. Polymers, 10(2), 201. doi:10.3390/polym10020201 es_ES
dc.description.references Loganathan, S., Jacob, J., Valapa, R. B., & Thomas, S. (2018). Influence of linear and branched amine functionalization in mesoporous silica on the thermal, mechanical and barrier properties of sustainable poly(lactic acid) biocomposite films. Polymer, 148, 149-157. doi:10.1016/j.polymer.2018.06.035 es_ES
dc.description.references Garrido-Miranda, K. A., Rivas, B. L., Pérez -Rivera, M. A., Sanfuentes, E. A., & Peña-Farfal, C. (2018). Antioxidant and antifungal effects of eugenol incorporated in bionanocomposites of poly(3-hydroxybutyrate)-thermoplastic starch. LWT, 98, 260-267. doi:10.1016/j.lwt.2018.08.046 es_ES
dc.description.references Woranuch, S., & Yoksan, R. (2013). Eugenol-loaded chitosan nanoparticles: II. Application in bio-based plastics for active packaging. Carbohydrate Polymers, 96(2), 586-592. doi:10.1016/j.carbpol.2012.09.099 es_ES
dc.description.references Fang, Z., & Bhandari, B. (2010). Encapsulation of polyphenols – a review. Trends in Food Science & Technology, 21(10), 510-523. doi:10.1016/j.tifs.2010.08.003 es_ES
dc.description.references Requena, R., Jiménez, A., Vargas, M., & Chiralt, A. (2016). Poly[(3-hydroxybutyrate)-co-(3-hydroxyvalerate)] active bilayer films obtained by compression moulding and applying essential oils at the interface. Polymer International, 65(8), 883-891. doi:10.1002/pi.5091 es_ES
dc.description.references Rivero, S., García, M. A., & Pinotti, A. (2009). Composite and bi-layer films based on gelatin and chitosan. Journal of Food Engineering, 90(4), 531-539. doi:10.1016/j.jfoodeng.2008.07.021 es_ES
dc.description.references Voon, H. C., Bhat, R., Easa, A. M., Liong, M. T., & Karim, A. A. (2010). Effect of Addition of Halloysite Nanoclay and SiO2 Nanoparticles on Barrier and Mechanical Properties of Bovine Gelatin Films. Food and Bioprocess Technology, 5(5), 1766-1774. doi:10.1007/s11947-010-0461-y es_ES
dc.description.references Jia, X., Li, Y., Cheng, Q., Zhang, S., & Zhang, B. (2007). Preparation and properties of poly(vinyl alcohol)/silica nanocomposites derived from copolymerization of vinyl silica nanoparticles and vinyl acetate. European Polymer Journal, 43(4), 1123-1131. doi:10.1016/j.eurpolymj.2007.01.019 es_ES
dc.description.references Tang, S., Zou, P., Xiong, H., & Tang, H. (2008). Effect of nano-SiO2 on the performance of starch/polyvinyl alcohol blend films. Carbohydrate Polymers, 72(3), 521-526. doi:10.1016/j.carbpol.2007.09.019 es_ES
dc.description.references Quiles-Carrillo, L., Montanes, N., Lagaron, J. M., Balart, R., & Torres-Giner, S. (2018). In Situ Compatibilization of Biopolymer Ternary Blends by Reactive Extrusion with Low-Functionality Epoxy-Based Styrene–Acrylic Oligomer. Journal of Polymers and the Environment, 27(1), 84-96. doi:10.1007/s10924-018-1324-2 es_ES
dc.description.references Nielsen, L. E. (1967). Models for the Permeability of Filled Polymer Systems. Journal of Macromolecular Science: Part A - Chemistry, 1(5), 929-942. doi:10.1080/10601326708053745 es_ES
dc.description.references Sanchez-Garcia, M. D., Gimenez, E., & Lagaron, J. M. (2008). Morphology and barrier properties of solvent cast composites of thermoplastic biopolymers and purified cellulose fibers. Carbohydrate Polymers, 71(2), 235-244. doi:10.1016/j.carbpol.2007.05.041 es_ES
dc.description.references Sanchez-Garcia, M. D., Gimenez, E., & Lagaron, J. M. (2007). Novel PET Nanocomposites of Interest in Food Packaging Applications and Comparative Barrier Performance With Biopolyester Nanocomposites. Journal of Plastic Film & Sheeting, 23(2), 133-148. doi:10.1177/8756087907083590 es_ES
dc.description.references Hashemi Tabatabaei, R., Jafari, S. M., Mirzaei, H., Mohammadi Nafchi, A., & Dehnad, D. (2018). Preparation and characterization of nano-SiO2 reinforced gelatin-k-carrageenan biocomposites. International Journal of Biological Macromolecules, 111, 1091-1099. doi:10.1016/j.ijbiomac.2018.01.116 es_ES
dc.description.references Hassannia-Kolaee, M., Khodaiyan, F., Pourahmad, R., & Shahabi-Ghahfarrokhi, I. (2016). Development of ecofriendly bionanocomposite: Whey protein isolate/pullulan films with nano-SiO 2. International Journal of Biological Macromolecules, 86, 139-144. doi:10.1016/j.ijbiomac.2016.01.032 es_ES
dc.description.references Tongnuanchan, P., Benjakul, S., & Prodpran, T. (2012). Properties and antioxidant activity of fish skin gelatin film incorporated with citrus essential oils. Food Chemistry, 134(3), 1571-1579. doi:10.1016/j.foodchem.2012.03.094 es_ES
dc.description.references Aguirre, A., Borneo, R., & León, A. E. (2013). Antimicrobial, mechanical and barrier properties of triticale protein films incorporated with oregano essential oil. Food Bioscience, 1, 2-9. doi:10.1016/j.fbio.2012.12.001 es_ES
dc.description.references Atarés, L., De Jesús, C., Talens, P., & Chiralt, A. (2010). Characterization of SPI-based edible films incorporated with cinnamon or ginger essential oils. Journal of Food Engineering, 99(3), 384-391. doi:10.1016/j.jfoodeng.2010.03.004 es_ES
dc.description.references Atarés, L., & Chiralt, A. (2016). Essential oils as additives in biodegradable films and coatings for active food packaging. Trends in Food Science & Technology, 48, 51-62. doi:10.1016/j.tifs.2015.12.001 es_ES
dc.description.references Castro-Mayorga, J. L., Fabra, M. J., Pourrahimi, A. M., Olsson, R. T., & Lagaron, J. M. (2017). The impact of zinc oxide particle morphology as an antimicrobial and when incorporated in poly(3-hydroxybutyrate-co-3-hydroxyvalerate) films for food packaging and food contact surfaces applications. Food and Bioproducts Processing, 101, 32-44. doi:10.1016/j.fbp.2016.10.007 es_ES
dc.description.references Figueroa-Lopez, K. J., Vicente, A. A., Reis, M. A. M., Torres-Giner, S., & Lagaron, J. M. (2019). Antimicrobial and Antioxidant Performance of Various Essential Oils and Natural Extracts and Their Incorporation into Biowaste Derived Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Layers Made from Electrospun Ultrathin Fibers. Nanomaterials, 9(2), 144. doi:10.3390/nano9020144 es_ES
dc.description.references Li, Z., Zhou, P., Zhou, F., Zhao, Y., Ren, L., & Yuan, X. (2018). Antimicrobial eugenol-loaded electrospun membranes of poly(ε-caprolactone)/gelatin incorporated with REDV for vascular graft applications. Colloids and Surfaces B: Biointerfaces, 162, 335-344. doi:10.1016/j.colsurfb.2017.12.004 es_ES
dc.description.references Park, S.-Y., Barton, M., & Pendleton, P. (2011). Mesoporous silica as a natural antimicrobial carrier. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 385(1-3), 256-261. doi:10.1016/j.colsurfa.2011.06.021 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem