- -

Reactive Melt Mixing of Poly(3-Hydroxybutyrate)/Rice Husk Flour Composites with Purified Biosustainably Produced Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate)

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Reactive Melt Mixing of Poly(3-Hydroxybutyrate)/Rice Husk Flour Composites with Purified Biosustainably Produced Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate)

Mostrar el registro completo del ítem

Meléndez-Rodríguez, B.; Torres-Giner, S.; Aldureid, A.; Cabedo, L.; Lagaron, JM. (2019). Reactive Melt Mixing of Poly(3-Hydroxybutyrate)/Rice Husk Flour Composites with Purified Biosustainably Produced Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate). Materials. 12(13):1-21. https://doi.org/10.3390/ma12132152

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/166262

Ficheros en el ítem

Metadatos del ítem

Título: Reactive Melt Mixing of Poly(3-Hydroxybutyrate)/Rice Husk Flour Composites with Purified Biosustainably Produced Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate)
Autor: Meléndez-Rodríguez, Beatriz Torres-Giner, S. Aldureid, Abdulaziz Cabedo, Luis Lagaron, Jose M.
Entidad UPV: Universitat Politècnica de València. Instituto Universitario de Ingeniería de Alimentos para el Desarrollo - Institut Universitari d'Enginyeria d'Aliments per al Desenvolupament
Fecha difusión:
Resumen:
[EN] Novel green composites based on commercial poly(3-hydroxybutyrate) (PHB) filled with 10 wt % rice husk flour (RHF) were melt-compounded in a mini-mixer unit using triglycidyl isocyanurate (TGIC) as compatibilizer and ...[+]
Palabras clave: PHB , PHBV , Rice husk , Green composites , Biosustainability , Waste valorization
Derechos de uso: Reconocimiento (by)
Fuente:
Materials. (eissn: 1996-1944 )
DOI: 10.3390/ma12132152
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/ma12132152
Código del Proyecto:
info:eu-repo/grantAgreement/EC/H2020/730349/EU/REsources from URban BIo-waSte/
info:eu-repo/grantAgreement/MINECO//IJCI-2016-29675/
info:eu-repo/grantAgreement/EC/H2020/773872/EU/HIGH PERFORMANCE POLYHYDROXYALKANOATES BASED PACKAGING TO MINIMISE FOOD WASTE/
info:eu-repo/grantAgreement/MINECO//AGL2015-63855-C2-1-R/ES/DESARROLLO DE UN CONCEPTO DE ENVASE MULTICAPA ALIMENTARIO DE ALTA BARRERA Y CON CARACTER ACTIVO Y BIOACTIVO DERIVADO DE SUBPRODUCTOS ALIMENTARIOS/
info:eu-repo/grantAgreement/AEI//BES-2016-077972/
Agradecimientos:
This research was supported by the Spanish Ministry of Science, Innovation, and Universities (MICIU) program number AGL2015-63855-C2-1-R and by the EU H2020 projects YPACK (reference number 773872) and ResUrbis (reference ...[+]
Tipo: Artículo

References

REHM, B. H. A. (2003). Polyester synthases: natural catalysts for plastics. Biochemical Journal, 376(1), 15-33. doi:10.1042/bj20031254

Alaerts, L., Augustinus, M., & Van Acker, K. (2018). Impact of Bio-Based Plastics on Current Recycling of Plastics. Sustainability, 10(5), 1487. doi:10.3390/su10051487

Cava, D., Giménez, E., Gavara, R., & Lagaron, J. M. (2006). Comparative Performance and Barrier Properties of Biodegradable Thermoplastics and Nanobiocomposites versus PET for Food Packaging Applications. Journal of Plastic Film & Sheeting, 22(4), 265-274. doi:10.1177/8756087906071354 [+]
REHM, B. H. A. (2003). Polyester synthases: natural catalysts for plastics. Biochemical Journal, 376(1), 15-33. doi:10.1042/bj20031254

Alaerts, L., Augustinus, M., & Van Acker, K. (2018). Impact of Bio-Based Plastics on Current Recycling of Plastics. Sustainability, 10(5), 1487. doi:10.3390/su10051487

Cava, D., Giménez, E., Gavara, R., & Lagaron, J. M. (2006). Comparative Performance and Barrier Properties of Biodegradable Thermoplastics and Nanobiocomposites versus PET for Food Packaging Applications. Journal of Plastic Film & Sheeting, 22(4), 265-274. doi:10.1177/8756087906071354

Reis, K. C., Pereira, J., Smith, A. C., Carvalho, C. W. P., Wellner, N., & Yakimets, I. (2008). Characterization of polyhydroxybutyrate-hydroxyvalerate (PHB-HV)/maize starch blend films. Journal of Food Engineering, 89(4), 361-369. doi:10.1016/j.jfoodeng.2008.04.022

Nduko, J. M., Matsumoto, K., & Taguchi, S. (2012). Biological Lactate-Polymers Synthesized by One-Pot Microbial Factory: Enzyme and Metabolic Engineering. Biobased Monomers, Polymers, and Materials, 213-235. doi:10.1021/bk-2012-1105.ch014

Philip, S., Keshavarz, T., & Roy, I. (2007). Polyhydroxyalkanoates: biodegradable polymers with a range of applications. Journal of Chemical Technology & Biotechnology, 82(3), 233-247. doi:10.1002/jctb.1667

Keshavarz, T., & Roy, I. (2010). Polyhydroxyalkanoates: bioplastics with a green agenda. Current Opinion in Microbiology, 13(3), 321-326. doi:10.1016/j.mib.2010.02.006

Blunt, W., Levin, D., & Cicek, N. (2018). Bioreactor Operating Strategies for Improved Polyhydroxyalkanoate (PHA) Productivity. Polymers, 10(11), 1197. doi:10.3390/polym10111197

Kourmentza, C., Plácido, J., Venetsaneas, N., Burniol-Figols, A., Varrone, C., Gavala, H. N., & Reis, M. A. M. (2017). Recent Advances and Challenges towards Sustainable Polyhydroxyalkanoate (PHA) Production. Bioengineering, 4(4), 55. doi:10.3390/bioengineering4020055

Jacquel, N., Lo, C.-W., Wu, H.-S., Wei, Y.-H., & Wang, S. S. (2007). Solubility of polyhydroxyalkanoates by experiment and thermodynamic correlations. AIChE Journal, 53(10), 2704-2714. doi:10.1002/aic.11274

Domingos, J. M. B., Puccio, S., Martinez, G. A., Amaral, N., Reis, M. A. M., Bandini, S., … Bertin, L. (2018). Cheese whey integrated valorisation: Production, concentration and exploitation of carboxylic acids for the production of polyhydroxyalkanoates by a fed-batch culture. Chemical Engineering Journal, 336, 47-53. doi:10.1016/j.cej.2017.11.024

Samorì, C., Abbondanzi, F., Galletti, P., Giorgini, L., Mazzocchetti, L., Torri, C., & Tagliavini, E. (2015). Extraction of polyhydroxyalkanoates from mixed microbial cultures: Impact on polymer quality and recovery. Bioresource Technology, 189, 195-202. doi:10.1016/j.biortech.2015.03.062

Lee, S. Y. (1996). Plastic bacteria? Progress and prospects for polyhydroxyalkanoate production in bacteria. Trends in Biotechnology, 14(11), 431-438. doi:10.1016/0167-7799(96)10061-5

Torres-Giner, S., Montanes, N., Fombuena, V., Boronat, T., & Sanchez-Nacher, L. (2016). Preparation and characterization of compression-molded green composite sheets made of poly(3-hydroxybutyrate) reinforced with long pita fibers. Advances in Polymer Technology, 37(5), 1305-1315. doi:10.1002/adv.21789

Saheb, D. N., & Jog, J. P. (1999). Natural fiber polymer composites: A review. Advances in Polymer Technology, 18(4), 351-363. doi:10.1002/(sici)1098-2329(199924)18:4<351::aid-adv6>3.0.co;2-x

Joshi, S. ., Drzal, L. ., Mohanty, A. ., & Arora, S. (2004). Are natural fiber composites environmentally superior to glass fiber reinforced composites? Composites Part A: Applied Science and Manufacturing, 35(3), 371-376. doi:10.1016/j.compositesa.2003.09.016

La Mantia, F. P., & Morreale, M. (2011). Green composites: A brief review. Composites Part A: Applied Science and Manufacturing, 42(6), 579-588. doi:10.1016/j.compositesa.2011.01.017

Abdul Khalil, H. P. S., Bhat, A. H., & Ireana Yusra, A. F. (2012). Green composites from sustainable cellulose nanofibrils: A review. Carbohydrate Polymers, 87(2), 963-979. doi:10.1016/j.carbpol.2011.08.078

Ndazi, B. S., & Karlsson, S. (2011). Characterization of hydrolytic degradation of polylactic acid/rice hulls composites in water at different temperatures. Express Polymer Letters, 5(2), 119-131. doi:10.3144/expresspolymlett.2011.13

Quiles-Carrillo, L., Montanes, N., Garcia-Garcia, D., Carbonell-Verdu, A., Balart, R., & Torres-Giner, S. (2018). Effect of different compatibilizers on injection-molded green composite pieces based on polylactide filled with almond shell flour. Composites Part B: Engineering, 147, 76-85. doi:10.1016/j.compositesb.2018.04.017

Quiles-Carrillo, L., Montanes, N., Sammon, C., Balart, R., & Torres-Giner, S. (2018). Compatibilization of highly sustainable polylactide/almond shell flour composites by reactive extrusion with maleinized linseed oil. Industrial Crops and Products, 111, 878-888. doi:10.1016/j.indcrop.2017.10.062

Liminana, P., Garcia-Sanoguera, D., Quiles-Carrillo, L., Balart, R., & Montanes, N. (2018). Development and characterization of environmentally friendly composites from poly(butylene succinate) (PBS) and almond shell flour with different compatibilizers. Composites Part B: Engineering, 144, 153-162. doi:10.1016/j.compositesb.2018.02.031

Montava-Jordà, S., Quiles-Carrillo, L., Richart, N., Torres-Giner, S., & Montanes, N. (2019). Enhanced Interfacial Adhesion of Polylactide/Poly(ε-caprolactone)/Walnut Shell Flour Composites by Reactive Extrusion with Maleinized Linseed Oil. Polymers, 11(5), 758. doi:10.3390/polym11050758

Garcia-Garcia, D., Carbonell-Verdu, A., Jordá-Vilaplana, A., Balart, R., & Garcia-Sanoguera, D. (2016). Development and characterization of green composites from bio-based polyethylene and peanut shell. Journal of Applied Polymer Science, 133(37). doi:10.1002/app.43940

Quiles-Carrillo, L., Montanes, N., Lagaron, J. M., Balart, R., & Torres-Giner, S. (2018). On the use of acrylated epoxidized soybean oil as a reactive compatibilizer in injection-molded compostable pieces consisting of polylactide filled with orange peel flour. Polymer International, 67(10), 1341-1351. doi:10.1002/pi.5588

Montava-Jordà, S., Torres-Giner, S., Ferrandiz-Bou, S., Quiles-Carrillo, L., & Montanes, N. (2019). Development of Sustainable and Cost-Competitive Injection-Molded Pieces of Partially Bio-Based Polyethylene Terephthalate through the Valorization of Cotton Textile Waste. International Journal of Molecular Sciences, 20(6), 1378. doi:10.3390/ijms20061378

Ferrero, B., Fombuena, V., Fenollar, O., Boronat, T., & Balart, R. (2014). Development of natural fiber-reinforced plastics (NFRP) based on biobased polyethylene and waste fibers from Posidonia oceanica seaweed. Polymer Composites, 36(8), 1378-1385. doi:10.1002/pc.23042

Aprianti, E., Shafigh, P., Bahri, S., & Farahani, J. N. (2015). Supplementary cementitious materials origin from agricultural wastes – A review. Construction and Building Materials, 74, 176-187. doi:10.1016/j.conbuildmat.2014.10.010

Adam, F., Appaturi, J. N., & Iqbal, A. (2012). The utilization of rice husk silica as a catalyst: Review and recent progress. Catalysis Today, 190(1), 2-14. doi:10.1016/j.cattod.2012.04.056

Adam, F., Kandasamy, K., & Balakrishnan, S. (2006). Iron incorporated heterogeneous catalyst from rice husk ash. Journal of Colloid and Interface Science, 304(1), 137-143. doi:10.1016/j.jcis.2006.08.051

Zhao, Q., Zhang, B., Quan, H., Yam, R. C. M., Yuen, R. K. K., & Li, R. K. Y. (2009). Flame retardancy of rice husk-filled high-density polyethylene ecocomposites. Composites Science and Technology, 69(15-16), 2675-2681. doi:10.1016/j.compscitech.2009.08.009

Panthapulakkal, S., Law, S., & Sain, M. (2005). Enhancement of Processability of Rice Husk Filled High-density Polyethylene Composite Profiles. Journal of Thermoplastic Composite Materials, 18(5), 445-458. doi:10.1177/0892705705054398

Nascimento, G. C., Cechinel, D. M., Piletti, R., Mendes, E., Paula, M. M. S., Riella, H. G., & Fiori, M. A. (2010). Effect of Different Concentrations and Sizes of Particles of Rice Husk Ash - RHS in the Mechanical Properties of Polypropylene. Materials Science Forum, 660-661, 23-28. doi:10.4028/www.scientific.net/msf.660-661.23

Verheyen, S., Blaton, N., Kinget, R., & Kim, H.-S. (2004). Thermogravimetric analysis of rice husk flour filled thermoplastic polymer composites. Journal of Thermal Analysis and Calorimetry, 76(2), 395-404. doi:10.1023/b:jtan.0000028020.02657.9b

Battegazzore, D., Bocchini, S., Alongi, J., Frache, A., & Marino, F. (2014). Cellulose extracted from rice husk as filler for poly(lactic acid): preparation and characterization. Cellulose, 21(3), 1813-1821. doi:10.1007/s10570-014-0207-5

Bertini, F., Canetti, M., Cacciamani, A., Elegir, G., Orlandi, M., & Zoia, L. (2012). Effect of ligno-derivatives on thermal properties and degradation behavior of poly(3-hydroxybutyrate)-based biocomposites. Polymer Degradation and Stability, 97(10), 1979-1987. doi:10.1016/j.polymdegradstab.2012.03.009

Boitt, A. P. W., Barcellos, I. O., Alberti, L. D., & Bucci, D. Z. (2014). Evaluation of the influence of the use of waste from the processing of rice in physicochemical properties and biodegradability of PHB in composites. Polímeros, 24(6), 640-645. doi:10.1590/0104-1428.1593

Moura, A., Bolba, C., Demori, R., Lima, L. P. F. C., & Santana, R. M. C. (2017). Effect of Rice Husk Treatment with Hot Water on Mechanical Performance in Poly(hydroxybutyrate)/Rice Husk Biocomposite. Journal of Polymers and the Environment, 26(6), 2632-2639. doi:10.1007/s10924-017-1156-5

Sánchez-Safont, E. L., Aldureid, A., Lagarón, J. M., Gámez-Pérez, J., & Cabedo, L. (2018). Biocomposites of different lignocellulosic wastes for sustainable food packaging applications. Composites Part B: Engineering, 145, 215-225. doi:10.1016/j.compositesb.2018.03.037

Borah, J. S., & Kim, D. S. (2016). Recent development in thermoplastic/wood composites and nanocomposites: A review. Korean Journal of Chemical Engineering, 33(11), 3035-3049. doi:10.1007/s11814-016-0183-6

George, J., Sreekala, M. S., & Thomas, S. (2001). A review on interface modification and characterization of natural fiber reinforced plastic composites. Polymer Engineering & Science, 41(9), 1471-1485. doi:10.1002/pen.10846

Chan, C. M., Vandi, L., Pratt, S., Halley, P., Richardson, D., Werker, A., & Laycock, B. (2018). Mechanical properties of poly(3‐hydroxybutyrate‐ co ‐3‐hydroxyvalerate)/wood flour composites: Effect of interface modifiers. Journal of Applied Polymer Science, 135(43), 46828. doi:10.1002/app.46828

Hao, M., & Wu, H. (2017). Effect of in situ reactive interfacial compatibilization on structure and properties of polylactide/sisal fiber biocomposites. Polymer Composites, 39, E174-E187. doi:10.1002/pc.24484

Dhavalikar, R., & Xanthos, M. (2002). Parameters affecting the chain extension and branching of PET in the melt state by polyepoxides. Journal of Applied Polymer Science, 87(4), 643-652. doi:10.1002/app.11425

Quiles-Carrillo, L., Montanes, N., Jorda-Vilaplana, A., Balart, R., & Torres-Giner, S. (2018). A comparative study on the effect of different reactive compatibilizers on injection-molded pieces of bio-based high-density polyethylene/polylactide blends. Journal of Applied Polymer Science, 136(16), 47396. doi:10.1002/app.47396

Wei, L., McDonald, A. G., & Stark, N. M. (2015). Grafting of Bacterial Polyhydroxybutyrate (PHB) onto Cellulose via In Situ Reactive Extrusion with Dicumyl Peroxide. Biomacromolecules, 16(3), 1040-1049. doi:10.1021/acs.biomac.5b00049

Ahmad, E. E. M., & Luyt, A. S. (2012). Effects of organic peroxide and polymer chain structure on mechanical and dynamic mechanical properties of sisal fiber reinforced polyethylene composites. Journal of Applied Polymer Science, 125(3), 2216-2222. doi:10.1002/app.36434

Nogellova, Z., Kokta, B. V., & Chodak, I. (1998). A Composite LDPE/WOOD Flour Crosslinked by Peroxide. Journal of Macromolecular Science, Part A, 35(7), 1069-1077. doi:10.1080/10601329808002101

Gu, R., Sain, M., & Kokta, B. V. (2014). Evaluation of wood composite additives in the mechanical property changes of PE blends. Polymer Composites, 36(2), 287-293. doi:10.1002/pc.22942

Joseph, K., Thomas, S., & Pavithran, C. (1996). Effect of chemical treatment on the tensile properties of short sisal fibre-reinforced polyethylene composites. Polymer, 37(23), 5139-5149. doi:10.1016/0032-3861(96)00144-9

Mokoena, M. A., Djoković, V., & Luyt, A. S. (2004). Composites of linear low density polyethylene and short sisal fibres: The effects of peroxide treatment. Journal of Materials Science, 39(10), 3403-3412. doi:10.1023/b:jmsc.0000026943.47803.0b

Melendez-Rodriguez, B., Castro-Mayorga, J. L., Reis, M. A. M., Sammon, C., Cabedo, L., Torres-Giner, S., & Lagaron, J. M. (2018). Preparation and Characterization of Electrospun Food Biopackaging Films of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Derived From Fruit Pulp Biowaste. Frontiers in Sustainable Food Systems, 2. doi:10.3389/fsufs.2018.00038

Figueroa-Lopez, K., Andrade-Mahecha, M., & Torres-Vargas, O. (2018). Development of Antimicrobial Biocomposite Films to Preserve the Quality of Bread. Molecules, 23(1), 212. doi:10.3390/molecules23010212

Kanatt, S. R., Rao, M. S., Chawla, S. P., & Sharma, A. (2012). Active chitosan–polyvinyl alcohol films with natural extracts. Food Hydrocolloids, 29(2), 290-297. doi:10.1016/j.foodhyd.2012.03.005

Scaglioni, P. T., & Badiale-Furlong, E. (2016). Rice husk as an adsorbent: A new analytical approach to determine aflatoxins in milk. Talanta, 152, 423-431. doi:10.1016/j.talanta.2016.02.042

Schneider, L. T., Bonassa, G., Alves, H. J., Meier, T. R. W., Frigo, E. P., & Teleken, J. G. (2017). Use of rice husk in waste cooking oil pretreatment. Environmental Technology, 40(5), 594-604. doi:10.1080/09593330.2017.1397772

Rosa, S. M. L., Santos, E. F., Ferreira, C. A., & Nachtigall, S. M. B. (2009). Studies on the properties of rice-husk-filled-PP composites: effect of maleated PP. Materials Research, 12(3), 333-338. doi:10.1590/s1516-14392009000300014

Torres-Giner, S., Montanes, N., Boronat, T., Quiles-Carrillo, L., & Balart, R. (2016). Melt grafting of sepiolite nanoclay onto poly(3-hydroxybutyrate-co-4-hydroxybutyrate) by reactive extrusion with multi-functional epoxy-based styrene-acrylic oligomer. European Polymer Journal, 84, 693-707. doi:10.1016/j.eurpolymj.2016.09.057

Formela, K., Zedler, L., Hejna, A., & Tercjak, A. (2018). Reactive extrusion of bio-based polymer blends and composites – Current trends and future developments. Express Polymer Letters, 12(1), 24-57. doi:10.3144/expresspolymlett.2018.4

Wei, L., Stark, N. M., & McDonald, A. G. (2015). Interfacial improvements in biocomposites based on poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) bioplastics reinforced and grafted with α-cellulose fibers. Green Chemistry, 17(10), 4800-4814. doi:10.1039/c5gc01568e

Martínez-Abad, A., Cabedo, L., Oliveira, C. S. S., Hilliou, L., Reis, M., & Lagarón, J. M. (2015). Characterization of polyhydroxyalkanoate blends incorporating unpurified biosustainably produced poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Journal of Applied Polymer Science, 133(2), n/a-n/a. doi:10.1002/app.42633

Maruhashi, Y., & Iida, S. (2001). Transparency of polymer blends. Polymer Engineering & Science, 41(11), 1987-1995. doi:10.1002/pen.10895

Figueroa-Lopez, K. J., Vicente, A. A., Reis, M. A. M., Torres-Giner, S., & Lagaron, J. M. (2019). Antimicrobial and Antioxidant Performance of Various Essential Oils and Natural Extracts and Their Incorporation into Biowaste Derived Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Layers Made from Electrospun Ultrathin Fibers. Nanomaterials, 9(2), 144. doi:10.3390/nano9020144

Ollier, R. P., D’Amico, D. A., Schroeder, W. F., Cyras, V. P., & Alvarez, V. A. (2018). Effect of clay treatment on the thermal degradation of PHB based nanocomposites. Applied Clay Science, 163, 146-152. doi:10.1016/j.clay.2018.07.025

De Matos Costa, A. R., Santos, R. M., Ito, E. N., de Carvalho, L. H., & Canedo, E. L. (2019). Melt and cold crystallization in a poly(3-hydroxybutyrate) poly(butylene adipate-co-terephthalate) blend. Journal of Thermal Analysis and Calorimetry, 137(4), 1341-1346. doi:10.1007/s10973-019-08027-9

Yoshie, N., Asaka, A., & Inoue, Y. (2004). Cocrystallization and Phase Segregation in Crystalline/Crystalline Polymer Blends of Bacterial Copolyesters. Macromolecules, 37(10), 3770-3779. doi:10.1021/ma049858p

ORGAN, S. (1994). Phase separation in blends of poly(hydroxybutyrate) with poly(hydroxybutyrate-co-hydroxyvalerate): variation with blend components. Polymer, 35(1), 86-92. doi:10.1016/0032-3861(94)90054-x

Kumagai, Y., & Doi, Y. (1992). Enzymatic degradation of poly(3-hydroxybutyrate)-based blends: poly(3-hydroxybutyrate)/poly(ethylene oxide) blend. Polymer Degradation and Stability, 35(1), 87-93. doi:10.1016/0141-3910(92)90139-v

Saito, M., Inoue, Y., & Yoshie, N. (2001). Cocrystallization and phase segregation of blends of poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Polymer, 42(13), 5573-5580. doi:10.1016/s0032-3861(01)00011-8

MANSARAY, K. G., & GHALY, A. E. (1998). Thermogravimetric Analysis of Rice Husks in an Air Atmosphere. Energy Sources, 20(7), 653-663. doi:10.1080/00908319808970084

Bugnicourt, E., Cinelli, P., Lazzeri, A., & Alvarez, V. (2014). Polyhydroxyalkanoate (PHA): Review of synthesis, characteristics, processing and potential applications in packaging. Express Polymer Letters, 8(11), 791-808. doi:10.3144/expresspolymlett.2014.82

Li, S.-D., He, J.-D., Yu, P. H., & Cheung, M. K. (2003). Thermal degradation of poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) as studied by TG, TG-FTIR, and Py-GC/MS. Journal of Applied Polymer Science, 89(6), 1530-1536. doi:10.1002/app.12249

Laycock, B., Halley, P., Pratt, S., Werker, A., & Lant, P. (2013). The chemomechanical properties of microbial polyhydroxyalkanoates. Progress in Polymer Science, 38(3-4), 536-583. doi:10.1016/j.progpolymsci.2012.06.003

Orts, W. J., Marchessault, R. H., Bluhm, T. L., & Hamer, G. K. (1990). Observation of strain-induced β form in poly(β-hydroxyalkanoates). Macromolecules, 23(26), 5368-5370. doi:10.1021/ma00228a014

Sanchez-Garcia, M. D., Gimenez, E., & Lagaron, J. M. (2007). Novel PET Nanocomposites of Interest in Food Packaging Applications and Comparative Barrier Performance With Biopolyester Nanocomposites. Journal of Plastic Film & Sheeting, 23(2), 133-148. doi:10.1177/8756087907083590

Cherpinski, A., Torres-Giner, S., Cabedo, L., & Lagaron, J. M. (2017). Post-processing optimization of electrospun submicron poly(3-hydroxybutyrate) fibers to obtain continuous films of interest in food packaging applications. Food Additives & Contaminants: Part A, 34(10), 1817-1830. doi:10.1080/19440049.2017.1355115

Razumovskii, L. P., Iordanskii, A. L., Zaikov, G. E., Zagreba, E. D., & McNeill, I. C. (1994). Sorption and diffusion of water and organic solvents in poly(β-hydroxybutyrate) films. Polymer Degradation and Stability, 44(2), 171-175. doi:10.1016/0141-3910(94)90161-9

Sanchez-Garcia, M. D., Gimenez, E., & Lagaron, J. M. (2008). Morphology and barrier properties of solvent cast composites of thermoplastic biopolymers and purified cellulose fibers. Carbohydrate Polymers, 71(2), 235-244. doi:10.1016/j.carbpol.2007.05.041

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem