- -

Reactive Melt Mixing of Poly(3-Hydroxybutyrate)/Rice Husk Flour Composites with Purified Biosustainably Produced Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate)

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Reactive Melt Mixing of Poly(3-Hydroxybutyrate)/Rice Husk Flour Composites with Purified Biosustainably Produced Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate)

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Meléndez-Rodríguez, Beatriz es_ES
dc.contributor.author Torres-Giner, S. es_ES
dc.contributor.author Aldureid, Abdulaziz es_ES
dc.contributor.author Cabedo, Luis es_ES
dc.contributor.author Lagaron, Jose M. es_ES
dc.date.accessioned 2021-05-13T03:31:58Z
dc.date.available 2021-05-13T03:31:58Z
dc.date.issued 2019-07-04 es_ES
dc.identifier.uri http://hdl.handle.net/10251/166262
dc.description.abstract [EN] Novel green composites based on commercial poly(3-hydroxybutyrate) (PHB) filled with 10 wt % rice husk flour (RHF) were melt-compounded in a mini-mixer unit using triglycidyl isocyanurate (TGIC) as compatibilizer and dicumyl peroxide (DCP) as initiator. Purified poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) produced by mixed bacterial cultures derived from fruit pulp waste was then incorporated into the green composite in contents in the 5-50 wt % range. Films for testing were obtained thereafter by thermo-compression and characterized. Results showed that the incorporation of up to 20 wt % of biowaste derived PHBV yielded green composite films with a high contact transparency, relatively low crystallinity, high thermal stability, improved mechanical ductility, and medium barrier performance to water vapor and aroma. This study puts forth the potential use of purified biosustainably produced PHBV as a cost-effective additive to develop more affordable and waste valorized food packaging articles. es_ES
dc.description.sponsorship This research was supported by the Spanish Ministry of Science, Innovation, and Universities (MICIU) program number AGL2015-63855-C2-1-R and by the EU H2020 projects YPACK (reference number 773872) and ResUrbis (reference number 730349). B.M.-R. and S.T.-G. acknowledge MICIU for her FPI grant (BES-2016-077972) and his Juan de la Cierva-Incorporación contract (IJCI-2016-29675), respectively. The authors also thank the Joint Unit in Polymers Technology between IATA¿CSIC and PIMA-Universitat Jaume I. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Materials es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject PHB es_ES
dc.subject PHBV es_ES
dc.subject Rice husk es_ES
dc.subject Green composites es_ES
dc.subject Biosustainability es_ES
dc.subject Waste valorization es_ES
dc.subject.classification CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA es_ES
dc.title Reactive Melt Mixing of Poly(3-Hydroxybutyrate)/Rice Husk Flour Composites with Purified Biosustainably Produced Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate) es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/ma12132152 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/730349/EU/REsources from URban BIo-waSte/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//IJCI-2016-29675/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/773872/EU/HIGH PERFORMANCE POLYHYDROXYALKANOATES BASED PACKAGING TO MINIMISE FOOD WASTE/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//AGL2015-63855-C2-1-R/ES/DESARROLLO DE UN CONCEPTO DE ENVASE MULTICAPA ALIMENTARIO DE ALTA BARRERA Y CON CARACTER ACTIVO Y BIOACTIVO DERIVADO DE SUBPRODUCTOS ALIMENTARIOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//BES-2016-077972/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Ingeniería de Alimentos para el Desarrollo - Institut Universitari d'Enginyeria d'Aliments per al Desenvolupament es_ES
dc.description.bibliographicCitation Meléndez-Rodríguez, B.; Torres-Giner, S.; Aldureid, A.; Cabedo, L.; Lagaron, JM. (2019). Reactive Melt Mixing of Poly(3-Hydroxybutyrate)/Rice Husk Flour Composites with Purified Biosustainably Produced Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate). Materials. 12(13):1-21. https://doi.org/10.3390/ma12132152 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/ma12132152 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 21 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 12 es_ES
dc.description.issue 13 es_ES
dc.identifier.eissn 1996-1944 es_ES
dc.identifier.pmid 31277419 es_ES
dc.identifier.pmcid PMC6651769 es_ES
dc.relation.pasarela S\417689 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references REHM, B. H. A. (2003). Polyester synthases: natural catalysts for plastics. Biochemical Journal, 376(1), 15-33. doi:10.1042/bj20031254 es_ES
dc.description.references Alaerts, L., Augustinus, M., & Van Acker, K. (2018). Impact of Bio-Based Plastics on Current Recycling of Plastics. Sustainability, 10(5), 1487. doi:10.3390/su10051487 es_ES
dc.description.references Cava, D., Giménez, E., Gavara, R., & Lagaron, J. M. (2006). Comparative Performance and Barrier Properties of Biodegradable Thermoplastics and Nanobiocomposites versus PET for Food Packaging Applications. Journal of Plastic Film & Sheeting, 22(4), 265-274. doi:10.1177/8756087906071354 es_ES
dc.description.references Reis, K. C., Pereira, J., Smith, A. C., Carvalho, C. W. P., Wellner, N., & Yakimets, I. (2008). Characterization of polyhydroxybutyrate-hydroxyvalerate (PHB-HV)/maize starch blend films. Journal of Food Engineering, 89(4), 361-369. doi:10.1016/j.jfoodeng.2008.04.022 es_ES
dc.description.references Nduko, J. M., Matsumoto, K., & Taguchi, S. (2012). Biological Lactate-Polymers Synthesized by One-Pot Microbial Factory: Enzyme and Metabolic Engineering. Biobased Monomers, Polymers, and Materials, 213-235. doi:10.1021/bk-2012-1105.ch014 es_ES
dc.description.references Philip, S., Keshavarz, T., & Roy, I. (2007). Polyhydroxyalkanoates: biodegradable polymers with a range of applications. Journal of Chemical Technology & Biotechnology, 82(3), 233-247. doi:10.1002/jctb.1667 es_ES
dc.description.references Keshavarz, T., & Roy, I. (2010). Polyhydroxyalkanoates: bioplastics with a green agenda. Current Opinion in Microbiology, 13(3), 321-326. doi:10.1016/j.mib.2010.02.006 es_ES
dc.description.references Blunt, W., Levin, D., & Cicek, N. (2018). Bioreactor Operating Strategies for Improved Polyhydroxyalkanoate (PHA) Productivity. Polymers, 10(11), 1197. doi:10.3390/polym10111197 es_ES
dc.description.references Kourmentza, C., Plácido, J., Venetsaneas, N., Burniol-Figols, A., Varrone, C., Gavala, H. N., & Reis, M. A. M. (2017). Recent Advances and Challenges towards Sustainable Polyhydroxyalkanoate (PHA) Production. Bioengineering, 4(4), 55. doi:10.3390/bioengineering4020055 es_ES
dc.description.references Jacquel, N., Lo, C.-W., Wu, H.-S., Wei, Y.-H., & Wang, S. S. (2007). Solubility of polyhydroxyalkanoates by experiment and thermodynamic correlations. AIChE Journal, 53(10), 2704-2714. doi:10.1002/aic.11274 es_ES
dc.description.references Domingos, J. M. B., Puccio, S., Martinez, G. A., Amaral, N., Reis, M. A. M., Bandini, S., … Bertin, L. (2018). Cheese whey integrated valorisation: Production, concentration and exploitation of carboxylic acids for the production of polyhydroxyalkanoates by a fed-batch culture. Chemical Engineering Journal, 336, 47-53. doi:10.1016/j.cej.2017.11.024 es_ES
dc.description.references Samorì, C., Abbondanzi, F., Galletti, P., Giorgini, L., Mazzocchetti, L., Torri, C., & Tagliavini, E. (2015). Extraction of polyhydroxyalkanoates from mixed microbial cultures: Impact on polymer quality and recovery. Bioresource Technology, 189, 195-202. doi:10.1016/j.biortech.2015.03.062 es_ES
dc.description.references Lee, S. Y. (1996). Plastic bacteria? Progress and prospects for polyhydroxyalkanoate production in bacteria. Trends in Biotechnology, 14(11), 431-438. doi:10.1016/0167-7799(96)10061-5 es_ES
dc.description.references Torres-Giner, S., Montanes, N., Fombuena, V., Boronat, T., & Sanchez-Nacher, L. (2016). Preparation and characterization of compression-molded green composite sheets made of poly(3-hydroxybutyrate) reinforced with long pita fibers. Advances in Polymer Technology, 37(5), 1305-1315. doi:10.1002/adv.21789 es_ES
dc.description.references Saheb, D. N., & Jog, J. P. (1999). Natural fiber polymer composites: A review. Advances in Polymer Technology, 18(4), 351-363. doi:10.1002/(sici)1098-2329(199924)18:4<351::aid-adv6>3.0.co;2-x es_ES
dc.description.references Joshi, S. ., Drzal, L. ., Mohanty, A. ., & Arora, S. (2004). Are natural fiber composites environmentally superior to glass fiber reinforced composites? Composites Part A: Applied Science and Manufacturing, 35(3), 371-376. doi:10.1016/j.compositesa.2003.09.016 es_ES
dc.description.references La Mantia, F. P., & Morreale, M. (2011). Green composites: A brief review. Composites Part A: Applied Science and Manufacturing, 42(6), 579-588. doi:10.1016/j.compositesa.2011.01.017 es_ES
dc.description.references Abdul Khalil, H. P. S., Bhat, A. H., & Ireana Yusra, A. F. (2012). Green composites from sustainable cellulose nanofibrils: A review. Carbohydrate Polymers, 87(2), 963-979. doi:10.1016/j.carbpol.2011.08.078 es_ES
dc.description.references Ndazi, B. S., & Karlsson, S. (2011). Characterization of hydrolytic degradation of polylactic acid/rice hulls composites in water at different temperatures. Express Polymer Letters, 5(2), 119-131. doi:10.3144/expresspolymlett.2011.13 es_ES
dc.description.references Quiles-Carrillo, L., Montanes, N., Garcia-Garcia, D., Carbonell-Verdu, A., Balart, R., & Torres-Giner, S. (2018). Effect of different compatibilizers on injection-molded green composite pieces based on polylactide filled with almond shell flour. Composites Part B: Engineering, 147, 76-85. doi:10.1016/j.compositesb.2018.04.017 es_ES
dc.description.references Quiles-Carrillo, L., Montanes, N., Sammon, C., Balart, R., & Torres-Giner, S. (2018). Compatibilization of highly sustainable polylactide/almond shell flour composites by reactive extrusion with maleinized linseed oil. Industrial Crops and Products, 111, 878-888. doi:10.1016/j.indcrop.2017.10.062 es_ES
dc.description.references Liminana, P., Garcia-Sanoguera, D., Quiles-Carrillo, L., Balart, R., & Montanes, N. (2018). Development and characterization of environmentally friendly composites from poly(butylene succinate) (PBS) and almond shell flour with different compatibilizers. Composites Part B: Engineering, 144, 153-162. doi:10.1016/j.compositesb.2018.02.031 es_ES
dc.description.references Montava-Jordà, S., Quiles-Carrillo, L., Richart, N., Torres-Giner, S., & Montanes, N. (2019). Enhanced Interfacial Adhesion of Polylactide/Poly(ε-caprolactone)/Walnut Shell Flour Composites by Reactive Extrusion with Maleinized Linseed Oil. Polymers, 11(5), 758. doi:10.3390/polym11050758 es_ES
dc.description.references Garcia-Garcia, D., Carbonell-Verdu, A., Jordá-Vilaplana, A., Balart, R., & Garcia-Sanoguera, D. (2016). Development and characterization of green composites from bio-based polyethylene and peanut shell. Journal of Applied Polymer Science, 133(37). doi:10.1002/app.43940 es_ES
dc.description.references Quiles-Carrillo, L., Montanes, N., Lagaron, J. M., Balart, R., & Torres-Giner, S. (2018). On the use of acrylated epoxidized soybean oil as a reactive compatibilizer in injection-molded compostable pieces consisting of polylactide filled with orange peel flour. Polymer International, 67(10), 1341-1351. doi:10.1002/pi.5588 es_ES
dc.description.references Montava-Jordà, S., Torres-Giner, S., Ferrandiz-Bou, S., Quiles-Carrillo, L., & Montanes, N. (2019). Development of Sustainable and Cost-Competitive Injection-Molded Pieces of Partially Bio-Based Polyethylene Terephthalate through the Valorization of Cotton Textile Waste. International Journal of Molecular Sciences, 20(6), 1378. doi:10.3390/ijms20061378 es_ES
dc.description.references Ferrero, B., Fombuena, V., Fenollar, O., Boronat, T., & Balart, R. (2014). Development of natural fiber-reinforced plastics (NFRP) based on biobased polyethylene and waste fibers from Posidonia oceanica seaweed. Polymer Composites, 36(8), 1378-1385. doi:10.1002/pc.23042 es_ES
dc.description.references Aprianti, E., Shafigh, P., Bahri, S., & Farahani, J. N. (2015). Supplementary cementitious materials origin from agricultural wastes – A review. Construction and Building Materials, 74, 176-187. doi:10.1016/j.conbuildmat.2014.10.010 es_ES
dc.description.references Adam, F., Appaturi, J. N., & Iqbal, A. (2012). The utilization of rice husk silica as a catalyst: Review and recent progress. Catalysis Today, 190(1), 2-14. doi:10.1016/j.cattod.2012.04.056 es_ES
dc.description.references Adam, F., Kandasamy, K., & Balakrishnan, S. (2006). Iron incorporated heterogeneous catalyst from rice husk ash. Journal of Colloid and Interface Science, 304(1), 137-143. doi:10.1016/j.jcis.2006.08.051 es_ES
dc.description.references Zhao, Q., Zhang, B., Quan, H., Yam, R. C. M., Yuen, R. K. K., & Li, R. K. Y. (2009). Flame retardancy of rice husk-filled high-density polyethylene ecocomposites. Composites Science and Technology, 69(15-16), 2675-2681. doi:10.1016/j.compscitech.2009.08.009 es_ES
dc.description.references Panthapulakkal, S., Law, S., & Sain, M. (2005). Enhancement of Processability of Rice Husk Filled High-density Polyethylene Composite Profiles. Journal of Thermoplastic Composite Materials, 18(5), 445-458. doi:10.1177/0892705705054398 es_ES
dc.description.references Nascimento, G. C., Cechinel, D. M., Piletti, R., Mendes, E., Paula, M. M. S., Riella, H. G., & Fiori, M. A. (2010). Effect of Different Concentrations and Sizes of Particles of Rice Husk Ash - RHS in the Mechanical Properties of Polypropylene. Materials Science Forum, 660-661, 23-28. doi:10.4028/www.scientific.net/msf.660-661.23 es_ES
dc.description.references Verheyen, S., Blaton, N., Kinget, R., & Kim, H.-S. (2004). Thermogravimetric analysis of rice husk flour filled thermoplastic polymer composites. Journal of Thermal Analysis and Calorimetry, 76(2), 395-404. doi:10.1023/b:jtan.0000028020.02657.9b es_ES
dc.description.references Battegazzore, D., Bocchini, S., Alongi, J., Frache, A., & Marino, F. (2014). Cellulose extracted from rice husk as filler for poly(lactic acid): preparation and characterization. Cellulose, 21(3), 1813-1821. doi:10.1007/s10570-014-0207-5 es_ES
dc.description.references Bertini, F., Canetti, M., Cacciamani, A., Elegir, G., Orlandi, M., & Zoia, L. (2012). Effect of ligno-derivatives on thermal properties and degradation behavior of poly(3-hydroxybutyrate)-based biocomposites. Polymer Degradation and Stability, 97(10), 1979-1987. doi:10.1016/j.polymdegradstab.2012.03.009 es_ES
dc.description.references Boitt, A. P. W., Barcellos, I. O., Alberti, L. D., & Bucci, D. Z. (2014). Evaluation of the influence of the use of waste from the processing of rice in physicochemical properties and biodegradability of PHB in composites. Polímeros, 24(6), 640-645. doi:10.1590/0104-1428.1593 es_ES
dc.description.references Moura, A., Bolba, C., Demori, R., Lima, L. P. F. C., & Santana, R. M. C. (2017). Effect of Rice Husk Treatment with Hot Water on Mechanical Performance in Poly(hydroxybutyrate)/Rice Husk Biocomposite. Journal of Polymers and the Environment, 26(6), 2632-2639. doi:10.1007/s10924-017-1156-5 es_ES
dc.description.references Sánchez-Safont, E. L., Aldureid, A., Lagarón, J. M., Gámez-Pérez, J., & Cabedo, L. (2018). Biocomposites of different lignocellulosic wastes for sustainable food packaging applications. Composites Part B: Engineering, 145, 215-225. doi:10.1016/j.compositesb.2018.03.037 es_ES
dc.description.references Borah, J. S., & Kim, D. S. (2016). Recent development in thermoplastic/wood composites and nanocomposites: A review. Korean Journal of Chemical Engineering, 33(11), 3035-3049. doi:10.1007/s11814-016-0183-6 es_ES
dc.description.references George, J., Sreekala, M. S., & Thomas, S. (2001). A review on interface modification and characterization of natural fiber reinforced plastic composites. Polymer Engineering & Science, 41(9), 1471-1485. doi:10.1002/pen.10846 es_ES
dc.description.references Chan, C. M., Vandi, L., Pratt, S., Halley, P., Richardson, D., Werker, A., & Laycock, B. (2018). Mechanical properties of poly(3‐hydroxybutyrate‐ co ‐3‐hydroxyvalerate)/wood flour composites: Effect of interface modifiers. Journal of Applied Polymer Science, 135(43), 46828. doi:10.1002/app.46828 es_ES
dc.description.references Hao, M., & Wu, H. (2017). Effect of in situ reactive interfacial compatibilization on structure and properties of polylactide/sisal fiber biocomposites. Polymer Composites, 39, E174-E187. doi:10.1002/pc.24484 es_ES
dc.description.references Dhavalikar, R., & Xanthos, M. (2002). Parameters affecting the chain extension and branching of PET in the melt state by polyepoxides. Journal of Applied Polymer Science, 87(4), 643-652. doi:10.1002/app.11425 es_ES
dc.description.references Quiles-Carrillo, L., Montanes, N., Jorda-Vilaplana, A., Balart, R., & Torres-Giner, S. (2018). A comparative study on the effect of different reactive compatibilizers on injection-molded pieces of bio-based high-density polyethylene/polylactide blends. Journal of Applied Polymer Science, 136(16), 47396. doi:10.1002/app.47396 es_ES
dc.description.references Wei, L., McDonald, A. G., & Stark, N. M. (2015). Grafting of Bacterial Polyhydroxybutyrate (PHB) onto Cellulose via In Situ Reactive Extrusion with Dicumyl Peroxide. Biomacromolecules, 16(3), 1040-1049. doi:10.1021/acs.biomac.5b00049 es_ES
dc.description.references Ahmad, E. E. M., & Luyt, A. S. (2012). Effects of organic peroxide and polymer chain structure on mechanical and dynamic mechanical properties of sisal fiber reinforced polyethylene composites. Journal of Applied Polymer Science, 125(3), 2216-2222. doi:10.1002/app.36434 es_ES
dc.description.references Nogellova, Z., Kokta, B. V., & Chodak, I. (1998). A Composite LDPE/WOOD Flour Crosslinked by Peroxide. Journal of Macromolecular Science, Part A, 35(7), 1069-1077. doi:10.1080/10601329808002101 es_ES
dc.description.references Gu, R., Sain, M., & Kokta, B. V. (2014). Evaluation of wood composite additives in the mechanical property changes of PE blends. Polymer Composites, 36(2), 287-293. doi:10.1002/pc.22942 es_ES
dc.description.references Joseph, K., Thomas, S., & Pavithran, C. (1996). Effect of chemical treatment on the tensile properties of short sisal fibre-reinforced polyethylene composites. Polymer, 37(23), 5139-5149. doi:10.1016/0032-3861(96)00144-9 es_ES
dc.description.references Mokoena, M. A., Djoković, V., & Luyt, A. S. (2004). Composites of linear low density polyethylene and short sisal fibres: The effects of peroxide treatment. Journal of Materials Science, 39(10), 3403-3412. doi:10.1023/b:jmsc.0000026943.47803.0b es_ES
dc.description.references Melendez-Rodriguez, B., Castro-Mayorga, J. L., Reis, M. A. M., Sammon, C., Cabedo, L., Torres-Giner, S., & Lagaron, J. M. (2018). Preparation and Characterization of Electrospun Food Biopackaging Films of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Derived From Fruit Pulp Biowaste. Frontiers in Sustainable Food Systems, 2. doi:10.3389/fsufs.2018.00038 es_ES
dc.description.references Figueroa-Lopez, K., Andrade-Mahecha, M., & Torres-Vargas, O. (2018). Development of Antimicrobial Biocomposite Films to Preserve the Quality of Bread. Molecules, 23(1), 212. doi:10.3390/molecules23010212 es_ES
dc.description.references Kanatt, S. R., Rao, M. S., Chawla, S. P., & Sharma, A. (2012). Active chitosan–polyvinyl alcohol films with natural extracts. Food Hydrocolloids, 29(2), 290-297. doi:10.1016/j.foodhyd.2012.03.005 es_ES
dc.description.references Scaglioni, P. T., & Badiale-Furlong, E. (2016). Rice husk as an adsorbent: A new analytical approach to determine aflatoxins in milk. Talanta, 152, 423-431. doi:10.1016/j.talanta.2016.02.042 es_ES
dc.description.references Schneider, L. T., Bonassa, G., Alves, H. J., Meier, T. R. W., Frigo, E. P., & Teleken, J. G. (2017). Use of rice husk in waste cooking oil pretreatment. Environmental Technology, 40(5), 594-604. doi:10.1080/09593330.2017.1397772 es_ES
dc.description.references Rosa, S. M. L., Santos, E. F., Ferreira, C. A., & Nachtigall, S. M. B. (2009). Studies on the properties of rice-husk-filled-PP composites: effect of maleated PP. Materials Research, 12(3), 333-338. doi:10.1590/s1516-14392009000300014 es_ES
dc.description.references Torres-Giner, S., Montanes, N., Boronat, T., Quiles-Carrillo, L., & Balart, R. (2016). Melt grafting of sepiolite nanoclay onto poly(3-hydroxybutyrate-co-4-hydroxybutyrate) by reactive extrusion with multi-functional epoxy-based styrene-acrylic oligomer. European Polymer Journal, 84, 693-707. doi:10.1016/j.eurpolymj.2016.09.057 es_ES
dc.description.references Formela, K., Zedler, L., Hejna, A., & Tercjak, A. (2018). Reactive extrusion of bio-based polymer blends and composites – Current trends and future developments. Express Polymer Letters, 12(1), 24-57. doi:10.3144/expresspolymlett.2018.4 es_ES
dc.description.references Wei, L., Stark, N. M., & McDonald, A. G. (2015). Interfacial improvements in biocomposites based on poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) bioplastics reinforced and grafted with α-cellulose fibers. Green Chemistry, 17(10), 4800-4814. doi:10.1039/c5gc01568e es_ES
dc.description.references Martínez-Abad, A., Cabedo, L., Oliveira, C. S. S., Hilliou, L., Reis, M., & Lagarón, J. M. (2015). Characterization of polyhydroxyalkanoate blends incorporating unpurified biosustainably produced poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Journal of Applied Polymer Science, 133(2), n/a-n/a. doi:10.1002/app.42633 es_ES
dc.description.references Maruhashi, Y., & Iida, S. (2001). Transparency of polymer blends. Polymer Engineering & Science, 41(11), 1987-1995. doi:10.1002/pen.10895 es_ES
dc.description.references Figueroa-Lopez, K. J., Vicente, A. A., Reis, M. A. M., Torres-Giner, S., & Lagaron, J. M. (2019). Antimicrobial and Antioxidant Performance of Various Essential Oils and Natural Extracts and Their Incorporation into Biowaste Derived Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Layers Made from Electrospun Ultrathin Fibers. Nanomaterials, 9(2), 144. doi:10.3390/nano9020144 es_ES
dc.description.references Ollier, R. P., D’Amico, D. A., Schroeder, W. F., Cyras, V. P., & Alvarez, V. A. (2018). Effect of clay treatment on the thermal degradation of PHB based nanocomposites. Applied Clay Science, 163, 146-152. doi:10.1016/j.clay.2018.07.025 es_ES
dc.description.references De Matos Costa, A. R., Santos, R. M., Ito, E. N., de Carvalho, L. H., & Canedo, E. L. (2019). Melt and cold crystallization in a poly(3-hydroxybutyrate) poly(butylene adipate-co-terephthalate) blend. Journal of Thermal Analysis and Calorimetry, 137(4), 1341-1346. doi:10.1007/s10973-019-08027-9 es_ES
dc.description.references Yoshie, N., Asaka, A., & Inoue, Y. (2004). Cocrystallization and Phase Segregation in Crystalline/Crystalline Polymer Blends of Bacterial Copolyesters. Macromolecules, 37(10), 3770-3779. doi:10.1021/ma049858p es_ES
dc.description.references ORGAN, S. (1994). Phase separation in blends of poly(hydroxybutyrate) with poly(hydroxybutyrate-co-hydroxyvalerate): variation with blend components. Polymer, 35(1), 86-92. doi:10.1016/0032-3861(94)90054-x es_ES
dc.description.references Kumagai, Y., & Doi, Y. (1992). Enzymatic degradation of poly(3-hydroxybutyrate)-based blends: poly(3-hydroxybutyrate)/poly(ethylene oxide) blend. Polymer Degradation and Stability, 35(1), 87-93. doi:10.1016/0141-3910(92)90139-v es_ES
dc.description.references Saito, M., Inoue, Y., & Yoshie, N. (2001). Cocrystallization and phase segregation of blends of poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Polymer, 42(13), 5573-5580. doi:10.1016/s0032-3861(01)00011-8 es_ES
dc.description.references MANSARAY, K. G., & GHALY, A. E. (1998). Thermogravimetric Analysis of Rice Husks in an Air Atmosphere. Energy Sources, 20(7), 653-663. doi:10.1080/00908319808970084 es_ES
dc.description.references Bugnicourt, E., Cinelli, P., Lazzeri, A., & Alvarez, V. (2014). Polyhydroxyalkanoate (PHA): Review of synthesis, characteristics, processing and potential applications in packaging. Express Polymer Letters, 8(11), 791-808. doi:10.3144/expresspolymlett.2014.82 es_ES
dc.description.references Li, S.-D., He, J.-D., Yu, P. H., & Cheung, M. K. (2003). Thermal degradation of poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) as studied by TG, TG-FTIR, and Py-GC/MS. Journal of Applied Polymer Science, 89(6), 1530-1536. doi:10.1002/app.12249 es_ES
dc.description.references Laycock, B., Halley, P., Pratt, S., Werker, A., & Lant, P. (2013). The chemomechanical properties of microbial polyhydroxyalkanoates. Progress in Polymer Science, 38(3-4), 536-583. doi:10.1016/j.progpolymsci.2012.06.003 es_ES
dc.description.references Orts, W. J., Marchessault, R. H., Bluhm, T. L., & Hamer, G. K. (1990). Observation of strain-induced β form in poly(β-hydroxyalkanoates). Macromolecules, 23(26), 5368-5370. doi:10.1021/ma00228a014 es_ES
dc.description.references Sanchez-Garcia, M. D., Gimenez, E., & Lagaron, J. M. (2007). Novel PET Nanocomposites of Interest in Food Packaging Applications and Comparative Barrier Performance With Biopolyester Nanocomposites. Journal of Plastic Film & Sheeting, 23(2), 133-148. doi:10.1177/8756087907083590 es_ES
dc.description.references Cherpinski, A., Torres-Giner, S., Cabedo, L., & Lagaron, J. M. (2017). Post-processing optimization of electrospun submicron poly(3-hydroxybutyrate) fibers to obtain continuous films of interest in food packaging applications. Food Additives & Contaminants: Part A, 34(10), 1817-1830. doi:10.1080/19440049.2017.1355115 es_ES
dc.description.references Razumovskii, L. P., Iordanskii, A. L., Zaikov, G. E., Zagreba, E. D., & McNeill, I. C. (1994). Sorption and diffusion of water and organic solvents in poly(β-hydroxybutyrate) films. Polymer Degradation and Stability, 44(2), 171-175. doi:10.1016/0141-3910(94)90161-9 es_ES
dc.description.references Sanchez-Garcia, M. D., Gimenez, E., & Lagaron, J. M. (2008). Morphology and barrier properties of solvent cast composites of thermoplastic biopolymers and purified cellulose fibers. Carbohydrate Polymers, 71(2), 235-244. doi:10.1016/j.carbpol.2007.05.041 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem