Mostrar el registro sencillo del ítem
dc.contributor.author | De Fez Lava, Ismael | es_ES |
dc.contributor.author | Belda Ortega, Román | es_ES |
dc.contributor.author | Guerri Cebollada, Juan Carlos | es_ES |
dc.date.accessioned | 2021-05-13T03:32:25Z | |
dc.date.available | 2021-05-13T03:32:25Z | |
dc.date.issued | 2020-05-15 | es_ES |
dc.identifier.issn | 0140-3664 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/166269 | |
dc.description.abstract | [EN] As users become more demanding with regards to the consumption of multimedia content, the importance of measuring their level of satisfaction is growing. The difficulty in terms of time and resources for assessing the Quality of Experience (QoE) has popularized the use of objective QoE models, which try to emulate human behavior regarding the playback of multimedia streaming. Some objective QoE models existing in the literature are based on the bitrate. However, the PSNR (Peak Signal-to-Noise Ratio) or VMAF (Video Multimethod Assessment Fusion) have been proved to be metrics with a closer relationship with the QoE than the bitrate. This paper proposes three new models to measure the QoE analytically in DASH (Dynamic Adaptive Streaming over HTTP) video services. The first is based on the bitrate of the displayed video segments, whereas the second and the third are based on the PSNR and VMAF of each video segment, respectively. The proposed models are compared to the ITU-T standard P.1203 as well as the bitrate-based QoE model proposed by Yin et al. Moreover, the paper presents a subjective study, which confirms the validity of the proposed models. The models are validated by using different DASH adaptation algorithms. In this sense, this paper also presents a DASH ABR (Adaptive Bitrate Streaming) algorithm called Look Ahead, which takes into account the inherent bitrate variability of the video encoding process in order to calculate, in real time, the appropriate quality level that minimizes the number of stalls during the playback. | es_ES |
dc.description.sponsorship | This work is supported by the PAID-10-18 Program and by the R&D Line "Technologies for distribution and processing of multimedia information and QoE'' from the Universitat Politecnica de Valencia. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Computer Communications | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Quality of Experience (QoE) | es_ES |
dc.subject | Dynamic Adaptive Streaming over HTTP (DASH) | es_ES |
dc.subject | Peak Signal-to-Noise Ratio (PSNR) | es_ES |
dc.subject | Video Multimethod Assessment Fusion (VMAF) | es_ES |
dc.subject | Adaptive Bitrate Streaming (ABR) | es_ES |
dc.subject | ITU-T P.1203 | es_ES |
dc.subject.classification | INGENIERIA TELEMATICA | es_ES |
dc.title | New objective QoE models for evaluating ABR algorithms in DASH | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.comcom.2020.05.011 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//PAID-10-18/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia | es_ES |
dc.description.bibliographicCitation | De Fez Lava, I.; Belda Ortega, R.; Guerri Cebollada, JC. (2020). New objective QoE models for evaluating ABR algorithms in DASH. Computer Communications. 158:126-140. https://doi.org/10.1016/j.comcom.2020.05.011 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.comcom.2020.05.011 | es_ES |
dc.description.upvformatpinicio | 126 | es_ES |
dc.description.upvformatpfin | 140 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 158 | es_ES |
dc.relation.pasarela | S\415166 | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.description.references | Cisco webpage, Cisco visual networking index: Forecast and trends, 2017–2022 White Paper, Available online: https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-741490.html. (Accessed September 2019). | es_ES |
dc.description.references | X. Yin, V. Sekar, B. Sinopoli, Toward a principled framework to design dynamic adaptive streaming algorithms over HTTP, in: Proc. of the 13th ACM Workshop on Hot Topics in Networks, HotNets, Los Angeles, CA, USA, Oct., 2014, pp. 1–7. | es_ES |
dc.description.references | Barman, N., & Martini, M. G. (2019). QoE Modeling for HTTP Adaptive Video Streaming–A Survey and Open Challenges. IEEE Access, 7, 30831-30859. doi:10.1109/access.2019.2901778 | es_ES |
dc.description.references | Liu, Y., Dey, S., Ulupinar, F., Luby, M., & Mao, Y. (2015). Deriving and Validating User Experience Model for DASH Video Streaming. IEEE Transactions on Broadcasting, 61(4), 651-665. doi:10.1109/tbc.2015.2460611 | es_ES |
dc.description.references | Chikkerur, S., Sundaram, V., Reisslein, M., & Karam, L. J. (2011). Objective Video Quality Assessment Methods: A Classification, Review, and Performance Comparison. IEEE Transactions on Broadcasting, 57(2), 165-182. doi:10.1109/tbc.2011.2104671 | es_ES |
dc.description.references | Ciubotaru, B., Muntean, G.-M., & Ghinea, G. (2009). Objective Assessment of Region of Interest-Aware Adaptive Multimedia Streaming Quality. IEEE Transactions on Broadcasting, 55(2), 202-212. doi:10.1109/tbc.2009.2020448 | es_ES |
dc.description.references | S. Winkler, A. Sharma, D. Mcnally, Perceptual video quality and blockiness metrics for multimedia streaming applications, in: Proc. of the Int. Symposium on Wireless Personal Multimedia Communications, Aalborg, Denmark, Sep., 2001, pp. 547–552. | es_ES |
dc.description.references | Bampis, C. G., & Bovik, A. C. (2018). Feature-based prediction of streaming video QoE: Distortions, stalling and memory. Signal Processing: Image Communication, 68, 218-228. doi:10.1016/j.image.2018.05.017 | es_ES |
dc.description.references | Soundararajan, R., & Bovik, A. C. (2013). Video Quality Assessment by Reduced Reference Spatio-Temporal Entropic Differencing. IEEE Transactions on Circuits and Systems for Video Technology, 23(4), 684-694. doi:10.1109/tcsvt.2012.2214933 | es_ES |
dc.description.references | A. Raake, M.-N. Garcia, W. Robitza, P. List, S. Göring, B. Feiten, A bitstream-based, scalable video-quality model for HTTP adaptive streaming: ITU-T P.1203.1, in: Proc. of Int. Conf. on Quality of Multimedia Experience, QoMEX, Erfurt, Germany, 2017. | es_ES |
dc.description.references | W. Robitza, S. Göring, A. Raake, D. Lindegren, G. Heikkilä, J. Gustafsson, P. List, B. Feiten, U. Wüstenhagen, M.-N. Garcia, K. Yamagishi, S. Broom, HTTP Adaptive Streaming QoE Estimation with ITU-T Rec. P.1203 – Open Databases and Software, in: Proc. of the 9th ACM Multimedia Systems Conference, Amsterdam, Netherlands, Jun., 2018, pp. 466–471. | es_ES |
dc.description.references | X. Deng, L. Chen, F. Wang, Z. Fei, W. Bai, C. Chi. G. Han, L. Wan, A novel strategy to evaluate QoE for video service delivered over HTTP adaptive streaming, in: Proc. of the IEEE 80th Vehicular Technology Conference, VTC2014-Fall, Vancouver, BC, Canada, Sep., 2014. | es_ES |
dc.description.references | Zegarra Rodriguez, D., Lopes Rosa, R., Costa Alfaia, E., Issy Abrahao, J., & Bressan, G. (2016). Video Quality Metric for Streaming Service Using DASH Standard. IEEE Transactions on Broadcasting, 62(3), 628-639. doi:10.1109/tbc.2016.2570012 | es_ES |
dc.description.references | M.N. Garcia, W. Robitza, A. Raake, On the accuracy of short term quality models for long-term quality prediction, in: Proc. 7th Int. Workshop Qual. Multimedia Exper., QoMEX, Pylos, Greece, 2015. | es_ES |
dc.description.references | Duanmu, Z., Zeng, K., Ma, K., Rehman, A., & Wang, Z. (2017). A Quality-of-Experience Index for Streaming Video. IEEE Journal of Selected Topics in Signal Processing, 11(1), 154-166. doi:10.1109/jstsp.2016.2608329 | es_ES |
dc.description.references | Bampis, C. G., Li, Z., & Bovik, A. C. (2017). Continuous Prediction of Streaming Video QoE Using Dynamic Networks. IEEE Signal Processing Letters, 24(7), 1083-1087. doi:10.1109/lsp.2017.2705423 | es_ES |
dc.description.references | Winkler, S., & Mohandas, P. (2008). The Evolution of Video Quality Measurement: From PSNR to Hybrid Metrics. IEEE Transactions on Broadcasting, 54(3), 660-668. doi:10.1109/tbc.2008.2000733 | es_ES |
dc.description.references | Bampis, C. G., Li, Z., & Bovik, A. C. (2019). Spatiotemporal Feature Integration and Model Fusion for Full Reference Video Quality Assessment. IEEE Transactions on Circuits and Systems for Video Technology, 29(8), 2256-2270. doi:10.1109/tcsvt.2018.2868262 | es_ES |
dc.description.references | Sheikh, H. R., & Bovik, A. C. (2006). Image information and visual quality. IEEE Transactions on Image Processing, 15(2), 430-444. doi:10.1109/tip.2005.859378 | es_ES |
dc.description.references | Li, S., Zhang, F., Ma, L., & Ngan, K. N. (2011). Image Quality Assessment by Separately Evaluating Detail Losses and Additive Impairments. IEEE Transactions on Multimedia, 13(5), 935-949. doi:10.1109/tmm.2011.2152382 | es_ES |
dc.description.references | Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273-297. doi:10.1007/bf00994018 | es_ES |
dc.description.references | C. Müller, S. Lederer, C. Timmerer, An evaluation of dynamic adaptive streaming over HTTP in vehicular environments, in: Proc. of the 4th Workshop on Mobile Video, MoVid, Chapel Hill, NC, USA, Feb., 2012. | es_ES |
dc.description.references | P. Juluri, V. Tamarapalli, D. Medhi, SARA: Segment aware rate adaptation algorithm for dynamic adaptive streaming over HTTP, in: Proc. of the IEEE Int. Conf. on Communication Workshop, ICCW, London, UK, Jun., 2015, pp. 1765–1770. | es_ES |
dc.description.references | Bentaleb, A., Taani, B., Begen, A. C., Timmerer, C., & Zimmermann, R. (2019). A Survey on Bitrate Adaptation Schemes for Streaming Media Over HTTP. IEEE Communications Surveys & Tutorials, 21(1), 562-585. doi:10.1109/comst.2018.2862938 | es_ES |
dc.description.references | K. Spiteri, R. Urgaonkar, R. Sitaraman, BOLA: Near-optimal bitrate adaption for online videos, in: Proc. of the Int. Conference on Computer Communications, INFOCOM, San Francisco, CA, USA, Apr., 2016. | es_ES |
dc.description.references | Y. Shuai, T. Herfet, A buffer dynamic stabilizer for low-latency adaptive video streaming, in: Proc. of the Int. Conference on Consumer Electronics, Berlin, Germany, Sep., 2016. | es_ES |
dc.description.references | Mobile video service performance study, HUAWEI White Paper, available online: http://www.ctiforum.com/uploadfile/2015/0701/20150701091255294.pdf, Published, (Accessed September 2019). | es_ES |
dc.description.references | C. Bampis, Measuring video quality with VMAF: Why you should care, in: AOMedia Research Symposium, San Francisco, Oct., 2019. | es_ES |
dc.description.references | Ghadiyaram, D., Pan, J., & Bovik, A. C. (2019). A Subjective and Objective Study of Stalling Events in Mobile Streaming Videos. IEEE Transactions on Circuits and Systems for Video Technology, 29(1), 183-197. doi:10.1109/tcsvt.2017.2768542 | es_ES |
dc.description.references | Tavakoli, S., Egger, S., Seufert, M., Schatz, R., Brunnstrom, K., & Garcia, N. (2016). Perceptual Quality of HTTP Adaptive Streaming Strategies: Cross-Experimental Analysis of Multi-Laboratory and Crowdsourced Subjective Studies. IEEE Journal on Selected Areas in Communications, 34(8), 2141-2153. doi:10.1109/jsac.2016.2577361 | es_ES |
dc.description.references | C. Moldovan, K. Hagn, C. Sieber, W. Kellerer, T. Hoßfeld, Keep calm and don’t switch: about the relationship between switches and quality in HAS, in: Proc. of the Int. Teletraffic Congress, ITC, Genoa, Italy, Sep., 2017. | es_ES |