- -

New objective QoE models for evaluating ABR algorithms in DASH

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

New objective QoE models for evaluating ABR algorithms in DASH

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author De Fez Lava, Ismael es_ES
dc.contributor.author Belda Ortega, Román es_ES
dc.contributor.author Guerri Cebollada, Juan Carlos es_ES
dc.date.accessioned 2021-05-13T03:32:25Z
dc.date.available 2021-05-13T03:32:25Z
dc.date.issued 2020-05-15 es_ES
dc.identifier.issn 0140-3664 es_ES
dc.identifier.uri http://hdl.handle.net/10251/166269
dc.description.abstract [EN] As users become more demanding with regards to the consumption of multimedia content, the importance of measuring their level of satisfaction is growing. The difficulty in terms of time and resources for assessing the Quality of Experience (QoE) has popularized the use of objective QoE models, which try to emulate human behavior regarding the playback of multimedia streaming. Some objective QoE models existing in the literature are based on the bitrate. However, the PSNR (Peak Signal-to-Noise Ratio) or VMAF (Video Multimethod Assessment Fusion) have been proved to be metrics with a closer relationship with the QoE than the bitrate. This paper proposes three new models to measure the QoE analytically in DASH (Dynamic Adaptive Streaming over HTTP) video services. The first is based on the bitrate of the displayed video segments, whereas the second and the third are based on the PSNR and VMAF of each video segment, respectively. The proposed models are compared to the ITU-T standard P.1203 as well as the bitrate-based QoE model proposed by Yin et al. Moreover, the paper presents a subjective study, which confirms the validity of the proposed models. The models are validated by using different DASH adaptation algorithms. In this sense, this paper also presents a DASH ABR (Adaptive Bitrate Streaming) algorithm called Look Ahead, which takes into account the inherent bitrate variability of the video encoding process in order to calculate, in real time, the appropriate quality level that minimizes the number of stalls during the playback. es_ES
dc.description.sponsorship This work is supported by the PAID-10-18 Program and by the R&D Line "Technologies for distribution and processing of multimedia information and QoE'' from the Universitat Politecnica de Valencia. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Computer Communications es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Quality of Experience (QoE) es_ES
dc.subject Dynamic Adaptive Streaming over HTTP (DASH) es_ES
dc.subject Peak Signal-to-Noise Ratio (PSNR) es_ES
dc.subject Video Multimethod Assessment Fusion (VMAF) es_ES
dc.subject Adaptive Bitrate Streaming (ABR) es_ES
dc.subject ITU-T P.1203 es_ES
dc.subject.classification INGENIERIA TELEMATICA es_ES
dc.title New objective QoE models for evaluating ABR algorithms in DASH es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.comcom.2020.05.011 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-10-18/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia es_ES
dc.description.bibliographicCitation De Fez Lava, I.; Belda Ortega, R.; Guerri Cebollada, JC. (2020). New objective QoE models for evaluating ABR algorithms in DASH. Computer Communications. 158:126-140. https://doi.org/10.1016/j.comcom.2020.05.011 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.comcom.2020.05.011 es_ES
dc.description.upvformatpinicio 126 es_ES
dc.description.upvformatpfin 140 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 158 es_ES
dc.relation.pasarela S\415166 es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references Cisco webpage, Cisco visual networking index: Forecast and trends, 2017–2022 White Paper, Available online: https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-741490.html. (Accessed September 2019). es_ES
dc.description.references X. Yin, V. Sekar, B. Sinopoli, Toward a principled framework to design dynamic adaptive streaming algorithms over HTTP, in: Proc. of the 13th ACM Workshop on Hot Topics in Networks, HotNets, Los Angeles, CA, USA, Oct., 2014, pp. 1–7. es_ES
dc.description.references Barman, N., & Martini, M. G. (2019). QoE Modeling for HTTP Adaptive Video Streaming–A Survey and Open Challenges. IEEE Access, 7, 30831-30859. doi:10.1109/access.2019.2901778 es_ES
dc.description.references Liu, Y., Dey, S., Ulupinar, F., Luby, M., & Mao, Y. (2015). Deriving and Validating User Experience Model for DASH Video Streaming. IEEE Transactions on Broadcasting, 61(4), 651-665. doi:10.1109/tbc.2015.2460611 es_ES
dc.description.references Chikkerur, S., Sundaram, V., Reisslein, M., & Karam, L. J. (2011). Objective Video Quality Assessment Methods: A Classification, Review, and Performance Comparison. IEEE Transactions on Broadcasting, 57(2), 165-182. doi:10.1109/tbc.2011.2104671 es_ES
dc.description.references Ciubotaru, B., Muntean, G.-M., & Ghinea, G. (2009). Objective Assessment of Region of Interest-Aware Adaptive Multimedia Streaming Quality. IEEE Transactions on Broadcasting, 55(2), 202-212. doi:10.1109/tbc.2009.2020448 es_ES
dc.description.references S. Winkler, A. Sharma, D. Mcnally, Perceptual video quality and blockiness metrics for multimedia streaming applications, in: Proc. of the Int. Symposium on Wireless Personal Multimedia Communications, Aalborg, Denmark, Sep., 2001, pp. 547–552. es_ES
dc.description.references Bampis, C. G., & Bovik, A. C. (2018). Feature-based prediction of streaming video QoE: Distortions, stalling and memory. Signal Processing: Image Communication, 68, 218-228. doi:10.1016/j.image.2018.05.017 es_ES
dc.description.references Soundararajan, R., & Bovik, A. C. (2013). Video Quality Assessment by Reduced Reference Spatio-Temporal Entropic Differencing. IEEE Transactions on Circuits and Systems for Video Technology, 23(4), 684-694. doi:10.1109/tcsvt.2012.2214933 es_ES
dc.description.references A. Raake, M.-N. Garcia, W. Robitza, P. List, S. Göring, B. Feiten, A bitstream-based, scalable video-quality model for HTTP adaptive streaming: ITU-T P.1203.1, in: Proc. of Int. Conf. on Quality of Multimedia Experience, QoMEX, Erfurt, Germany, 2017. es_ES
dc.description.references W. Robitza, S. Göring, A. Raake, D. Lindegren, G. Heikkilä, J. Gustafsson, P. List, B. Feiten, U. Wüstenhagen, M.-N. Garcia, K. Yamagishi, S. Broom, HTTP Adaptive Streaming QoE Estimation with ITU-T Rec. P.1203 – Open Databases and Software, in: Proc. of the 9th ACM Multimedia Systems Conference, Amsterdam, Netherlands, Jun., 2018, pp. 466–471. es_ES
dc.description.references X. Deng, L. Chen, F. Wang, Z. Fei, W. Bai, C. Chi. G. Han, L. Wan, A novel strategy to evaluate QoE for video service delivered over HTTP adaptive streaming, in: Proc. of the IEEE 80th Vehicular Technology Conference, VTC2014-Fall, Vancouver, BC, Canada, Sep., 2014. es_ES
dc.description.references Zegarra Rodriguez, D., Lopes Rosa, R., Costa Alfaia, E., Issy Abrahao, J., & Bressan, G. (2016). Video Quality Metric for Streaming Service Using DASH Standard. IEEE Transactions on Broadcasting, 62(3), 628-639. doi:10.1109/tbc.2016.2570012 es_ES
dc.description.references M.N. Garcia, W. Robitza, A. Raake, On the accuracy of short term quality models for long-term quality prediction, in: Proc. 7th Int. Workshop Qual. Multimedia Exper., QoMEX, Pylos, Greece, 2015. es_ES
dc.description.references Duanmu, Z., Zeng, K., Ma, K., Rehman, A., & Wang, Z. (2017). A Quality-of-Experience Index for Streaming Video. IEEE Journal of Selected Topics in Signal Processing, 11(1), 154-166. doi:10.1109/jstsp.2016.2608329 es_ES
dc.description.references Bampis, C. G., Li, Z., & Bovik, A. C. (2017). Continuous Prediction of Streaming Video QoE Using Dynamic Networks. IEEE Signal Processing Letters, 24(7), 1083-1087. doi:10.1109/lsp.2017.2705423 es_ES
dc.description.references Winkler, S., & Mohandas, P. (2008). The Evolution of Video Quality Measurement: From PSNR to Hybrid Metrics. IEEE Transactions on Broadcasting, 54(3), 660-668. doi:10.1109/tbc.2008.2000733 es_ES
dc.description.references Bampis, C. G., Li, Z., & Bovik, A. C. (2019). Spatiotemporal Feature Integration and Model Fusion for Full Reference Video Quality Assessment. IEEE Transactions on Circuits and Systems for Video Technology, 29(8), 2256-2270. doi:10.1109/tcsvt.2018.2868262 es_ES
dc.description.references Sheikh, H. R., & Bovik, A. C. (2006). Image information and visual quality. IEEE Transactions on Image Processing, 15(2), 430-444. doi:10.1109/tip.2005.859378 es_ES
dc.description.references Li, S., Zhang, F., Ma, L., & Ngan, K. N. (2011). Image Quality Assessment by Separately Evaluating Detail Losses and Additive Impairments. IEEE Transactions on Multimedia, 13(5), 935-949. doi:10.1109/tmm.2011.2152382 es_ES
dc.description.references Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273-297. doi:10.1007/bf00994018 es_ES
dc.description.references C. Müller, S. Lederer, C. Timmerer, An evaluation of dynamic adaptive streaming over HTTP in vehicular environments, in: Proc. of the 4th Workshop on Mobile Video, MoVid, Chapel Hill, NC, USA, Feb., 2012. es_ES
dc.description.references P. Juluri, V. Tamarapalli, D. Medhi, SARA: Segment aware rate adaptation algorithm for dynamic adaptive streaming over HTTP, in: Proc. of the IEEE Int. Conf. on Communication Workshop, ICCW, London, UK, Jun., 2015, pp. 1765–1770. es_ES
dc.description.references Bentaleb, A., Taani, B., Begen, A. C., Timmerer, C., & Zimmermann, R. (2019). A Survey on Bitrate Adaptation Schemes for Streaming Media Over HTTP. IEEE Communications Surveys & Tutorials, 21(1), 562-585. doi:10.1109/comst.2018.2862938 es_ES
dc.description.references K. Spiteri, R. Urgaonkar, R. Sitaraman, BOLA: Near-optimal bitrate adaption for online videos, in: Proc. of the Int. Conference on Computer Communications, INFOCOM, San Francisco, CA, USA, Apr., 2016. es_ES
dc.description.references Y. Shuai, T. Herfet, A buffer dynamic stabilizer for low-latency adaptive video streaming, in: Proc. of the Int. Conference on Consumer Electronics, Berlin, Germany, Sep., 2016. es_ES
dc.description.references Mobile video service performance study, HUAWEI White Paper, available online: http://www.ctiforum.com/uploadfile/2015/0701/20150701091255294.pdf, Published, (Accessed September 2019). es_ES
dc.description.references C. Bampis, Measuring video quality with VMAF: Why you should care, in: AOMedia Research Symposium, San Francisco, Oct., 2019. es_ES
dc.description.references Ghadiyaram, D., Pan, J., & Bovik, A. C. (2019). A Subjective and Objective Study of Stalling Events in Mobile Streaming Videos. IEEE Transactions on Circuits and Systems for Video Technology, 29(1), 183-197. doi:10.1109/tcsvt.2017.2768542 es_ES
dc.description.references Tavakoli, S., Egger, S., Seufert, M., Schatz, R., Brunnstrom, K., & Garcia, N. (2016). Perceptual Quality of HTTP Adaptive Streaming Strategies: Cross-Experimental Analysis of Multi-Laboratory and Crowdsourced Subjective Studies. IEEE Journal on Selected Areas in Communications, 34(8), 2141-2153. doi:10.1109/jsac.2016.2577361 es_ES
dc.description.references C. Moldovan, K. Hagn, C. Sieber, W. Kellerer, T. Hoßfeld, Keep calm and don’t switch: about the relationship between switches and quality in HAS, in: Proc. of the Int. Teletraffic Congress, ITC, Genoa, Italy, Sep., 2017. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem