Cisco webpage, Cisco visual networking index: Forecast and trends, 2017–2022 White Paper, Available online: https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-741490.html. (Accessed September 2019).
X. Yin, V. Sekar, B. Sinopoli, Toward a principled framework to design dynamic adaptive streaming algorithms over HTTP, in: Proc. of the 13th ACM Workshop on Hot Topics in Networks, HotNets, Los Angeles, CA, USA, Oct., 2014, pp. 1–7.
Barman, N., & Martini, M. G. (2019). QoE Modeling for HTTP Adaptive Video Streaming–A Survey and Open Challenges. IEEE Access, 7, 30831-30859. doi:10.1109/access.2019.2901778
[+]
Cisco webpage, Cisco visual networking index: Forecast and trends, 2017–2022 White Paper, Available online: https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-741490.html. (Accessed September 2019).
X. Yin, V. Sekar, B. Sinopoli, Toward a principled framework to design dynamic adaptive streaming algorithms over HTTP, in: Proc. of the 13th ACM Workshop on Hot Topics in Networks, HotNets, Los Angeles, CA, USA, Oct., 2014, pp. 1–7.
Barman, N., & Martini, M. G. (2019). QoE Modeling for HTTP Adaptive Video Streaming–A Survey and Open Challenges. IEEE Access, 7, 30831-30859. doi:10.1109/access.2019.2901778
Liu, Y., Dey, S., Ulupinar, F., Luby, M., & Mao, Y. (2015). Deriving and Validating User Experience Model for DASH Video Streaming. IEEE Transactions on Broadcasting, 61(4), 651-665. doi:10.1109/tbc.2015.2460611
Chikkerur, S., Sundaram, V., Reisslein, M., & Karam, L. J. (2011). Objective Video Quality Assessment Methods: A Classification, Review, and Performance Comparison. IEEE Transactions on Broadcasting, 57(2), 165-182. doi:10.1109/tbc.2011.2104671
Ciubotaru, B., Muntean, G.-M., & Ghinea, G. (2009). Objective Assessment of Region of Interest-Aware Adaptive Multimedia Streaming Quality. IEEE Transactions on Broadcasting, 55(2), 202-212. doi:10.1109/tbc.2009.2020448
S. Winkler, A. Sharma, D. Mcnally, Perceptual video quality and blockiness metrics for multimedia streaming applications, in: Proc. of the Int. Symposium on Wireless Personal Multimedia Communications, Aalborg, Denmark, Sep., 2001, pp. 547–552.
Bampis, C. G., & Bovik, A. C. (2018). Feature-based prediction of streaming video QoE: Distortions, stalling and memory. Signal Processing: Image Communication, 68, 218-228. doi:10.1016/j.image.2018.05.017
Soundararajan, R., & Bovik, A. C. (2013). Video Quality Assessment by Reduced Reference Spatio-Temporal Entropic Differencing. IEEE Transactions on Circuits and Systems for Video Technology, 23(4), 684-694. doi:10.1109/tcsvt.2012.2214933
A. Raake, M.-N. Garcia, W. Robitza, P. List, S. Göring, B. Feiten, A bitstream-based, scalable video-quality model for HTTP adaptive streaming: ITU-T P.1203.1, in: Proc. of Int. Conf. on Quality of Multimedia Experience, QoMEX, Erfurt, Germany, 2017.
W. Robitza, S. Göring, A. Raake, D. Lindegren, G. Heikkilä, J. Gustafsson, P. List, B. Feiten, U. Wüstenhagen, M.-N. Garcia, K. Yamagishi, S. Broom, HTTP Adaptive Streaming QoE Estimation with ITU-T Rec. P.1203 – Open Databases and Software, in: Proc. of the 9th ACM Multimedia Systems Conference, Amsterdam, Netherlands, Jun., 2018, pp. 466–471.
X. Deng, L. Chen, F. Wang, Z. Fei, W. Bai, C. Chi. G. Han, L. Wan, A novel strategy to evaluate QoE for video service delivered over HTTP adaptive streaming, in: Proc. of the IEEE 80th Vehicular Technology Conference, VTC2014-Fall, Vancouver, BC, Canada, Sep., 2014.
Zegarra Rodriguez, D., Lopes Rosa, R., Costa Alfaia, E., Issy Abrahao, J., & Bressan, G. (2016). Video Quality Metric for Streaming Service Using DASH Standard. IEEE Transactions on Broadcasting, 62(3), 628-639. doi:10.1109/tbc.2016.2570012
M.N. Garcia, W. Robitza, A. Raake, On the accuracy of short term quality models for long-term quality prediction, in: Proc. 7th Int. Workshop Qual. Multimedia Exper., QoMEX, Pylos, Greece, 2015.
Duanmu, Z., Zeng, K., Ma, K., Rehman, A., & Wang, Z. (2017). A Quality-of-Experience Index for Streaming Video. IEEE Journal of Selected Topics in Signal Processing, 11(1), 154-166. doi:10.1109/jstsp.2016.2608329
Bampis, C. G., Li, Z., & Bovik, A. C. (2017). Continuous Prediction of Streaming Video QoE Using Dynamic Networks. IEEE Signal Processing Letters, 24(7), 1083-1087. doi:10.1109/lsp.2017.2705423
Winkler, S., & Mohandas, P. (2008). The Evolution of Video Quality Measurement: From PSNR to Hybrid Metrics. IEEE Transactions on Broadcasting, 54(3), 660-668. doi:10.1109/tbc.2008.2000733
Bampis, C. G., Li, Z., & Bovik, A. C. (2019). Spatiotemporal Feature Integration and Model Fusion for Full Reference Video Quality Assessment. IEEE Transactions on Circuits and Systems for Video Technology, 29(8), 2256-2270. doi:10.1109/tcsvt.2018.2868262
Sheikh, H. R., & Bovik, A. C. (2006). Image information and visual quality. IEEE Transactions on Image Processing, 15(2), 430-444. doi:10.1109/tip.2005.859378
Li, S., Zhang, F., Ma, L., & Ngan, K. N. (2011). Image Quality Assessment by Separately Evaluating Detail Losses and Additive Impairments. IEEE Transactions on Multimedia, 13(5), 935-949. doi:10.1109/tmm.2011.2152382
Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273-297. doi:10.1007/bf00994018
C. Müller, S. Lederer, C. Timmerer, An evaluation of dynamic adaptive streaming over HTTP in vehicular environments, in: Proc. of the 4th Workshop on Mobile Video, MoVid, Chapel Hill, NC, USA, Feb., 2012.
P. Juluri, V. Tamarapalli, D. Medhi, SARA: Segment aware rate adaptation algorithm for dynamic adaptive streaming over HTTP, in: Proc. of the IEEE Int. Conf. on Communication Workshop, ICCW, London, UK, Jun., 2015, pp. 1765–1770.
Bentaleb, A., Taani, B., Begen, A. C., Timmerer, C., & Zimmermann, R. (2019). A Survey on Bitrate Adaptation Schemes for Streaming Media Over HTTP. IEEE Communications Surveys & Tutorials, 21(1), 562-585. doi:10.1109/comst.2018.2862938
K. Spiteri, R. Urgaonkar, R. Sitaraman, BOLA: Near-optimal bitrate adaption for online videos, in: Proc. of the Int. Conference on Computer Communications, INFOCOM, San Francisco, CA, USA, Apr., 2016.
Y. Shuai, T. Herfet, A buffer dynamic stabilizer for low-latency adaptive video streaming, in: Proc. of the Int. Conference on Consumer Electronics, Berlin, Germany, Sep., 2016.
Mobile video service performance study, HUAWEI White Paper, available online: http://www.ctiforum.com/uploadfile/2015/0701/20150701091255294.pdf, Published, (Accessed September 2019).
C. Bampis, Measuring video quality with VMAF: Why you should care, in: AOMedia Research Symposium, San Francisco, Oct., 2019.
Ghadiyaram, D., Pan, J., & Bovik, A. C. (2019). A Subjective and Objective Study of Stalling Events in Mobile Streaming Videos. IEEE Transactions on Circuits and Systems for Video Technology, 29(1), 183-197. doi:10.1109/tcsvt.2017.2768542
Tavakoli, S., Egger, S., Seufert, M., Schatz, R., Brunnstrom, K., & Garcia, N. (2016). Perceptual Quality of HTTP Adaptive Streaming Strategies: Cross-Experimental Analysis of Multi-Laboratory and Crowdsourced Subjective Studies. IEEE Journal on Selected Areas in Communications, 34(8), 2141-2153. doi:10.1109/jsac.2016.2577361
C. Moldovan, K. Hagn, C. Sieber, W. Kellerer, T. Hoßfeld, Keep calm and don’t switch: about the relationship between switches and quality in HAS, in: Proc. of the Int. Teletraffic Congress, ITC, Genoa, Italy, Sep., 2017.
[-]