- -

Preparation, characterization and antimicrobial properties of electrospun polylactide films containing Allium ursinum L. extract

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Preparation, characterization and antimicrobial properties of electrospun polylactide films containing Allium ursinum L. extract

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Radusin, Tanja es_ES
dc.contributor.author Torres-Giner, S. es_ES
dc.contributor.author Stupar, Alena es_ES
dc.contributor.author Ristic, Ivan es_ES
dc.contributor.author Miletic, Aleksandra es_ES
dc.contributor.author Novakovic, Aleksandra es_ES
dc.contributor.author Lagaron, Jose M. es_ES
dc.date.accessioned 2021-05-13T03:32:35Z
dc.date.available 2021-05-13T03:32:35Z
dc.date.issued 2019-09 es_ES
dc.identifier.issn 2214-2894 es_ES
dc.identifier.uri http://hdl.handle.net/10251/166272
dc.description.abstract [EN] Novel active films of polylactide (PLA) containing extract of Allium ursinum L. (AU), also called wild garlic, at 10 wt% were succesfully prepared by the electrospinning technology. Electrospinning of the AU-containing PLA solutions yielded fibers in the 1-2 mu m range with a beaded-like morphology, suggesting that the AU extract was mainly encapsulated in certain fiber regions. The resultant electrospun mats were then subjected to annealing at 135 degrees C to obtain continuous films of application interest in active packaging. The film cross-sections revealed that the AU extract was incorporated into the PLA matrix in the form of micro-sized droplets. The thermal properties showed that the AU extract addition plasticized the PLA matrix and also lowered its crystallinity degree as it disrupted the ordering of the PLA chains by hindering their folding into the crystalline lattice. Thermal stability analysis indicated that the natural extract positively contributed to a delay in thermal degradation of the biopolymer and it was thermally stable when encapsulated in the PLA film. The AU extract incorporation also produced a mechanical reinforcement on the electrospun PLA films and improved slightly the water barrier performance. Finally, a significant antimicrobial activity of the electrospun PLA films containing the natural extract was achieved against foodborne bacteria. es_ES
dc.description.sponsorship This paper has been supported by the COST Action FP1405 Active and intelligent fiber-based packaging - innovation and market introduction (ActInPak), FOODStars project Food Product Development Cycle: Frame for stepping Up Research Excellence of FINS (Grant Agreement 692276), the Spanish Ministry of Science, Innovation, and Universities (MICIU, project AGL2015-63855-C2-1-R) and the EU H2020 project YPACK (reference number 773872). Torres-Giner also acknowledges MICIU for his Juan de la Cierva-Incorporacion contract (IJCI-2016-29675). es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Food Packaging and Shelf Life es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Electrospinning es_ES
dc.subject Natural extracts es_ES
dc.subject Nanoencapsulation es_ES
dc.subject Active food packaging es_ES
dc.subject.classification CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA es_ES
dc.title Preparation, characterization and antimicrobial properties of electrospun polylactide films containing Allium ursinum L. extract es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.fpsl.2019.100357 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/692276/EU/Innovative Food Product Development Cycle: Frame for Stepping Up Research Excellence of FINS - FOODstars/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/COST//FP1405/EU/Active and intelligent fibre-based packaging - innovation and market introduction (ActInPak)/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/773872/EU/HIGH PERFORMANCE POLYHYDROXYALKANOATES BASED PACKAGING TO MINIMISE FOOD WASTE/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//IJCI-2016-29675/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//AGL2015-63855-C2-1-R/ES/DESARROLLO DE UN CONCEPTO DE ENVASE MULTICAPA ALIMENTARIO DE ALTA BARRERA Y CON CARACTER ACTIVO Y BIOACTIVO DERIVADO DE SUBPRODUCTOS ALIMENTARIOS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Ingeniería de Alimentos para el Desarrollo - Institut Universitari d'Enginyeria d'Aliments per al Desenvolupament es_ES
dc.description.bibliographicCitation Radusin, T.; Torres-Giner, S.; Stupar, A.; Ristic, I.; Miletic, A.; Novakovic, A.; Lagaron, JM. (2019). Preparation, characterization and antimicrobial properties of electrospun polylactide films containing Allium ursinum L. extract. Food Packaging and Shelf Life. 21:1-9. https://doi.org/10.1016/j.fpsl.2019.100357 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.fpsl.2019.100357 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 9 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 21 es_ES
dc.relation.pasarela S\427499 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder European Cooperation in Science and Technology es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Barile, E., Bonanomi, G., Antignani, V., Zolfaghari, B., Sajjadi, S. E., Scala, F., & Lanzotti, V. (2007). Saponins from Allium minutiflorum with antifungal activity. Phytochemistry, 68(5), 596-603. doi:10.1016/j.phytochem.2006.10.009 es_ES
dc.description.references Belovic, M., Mastilovic, J., & Kevresan, Z. (2014). Change of surface colour parameters during storage of paprika (Capsicum annuum L.). Food and Feed Research, 41(2), 85-92. doi:10.5937/ffr1402085b es_ES
dc.description.references Benkeblia, N. (2004). Antimicrobial activity of essential oil extracts of various onions (Allium cepa) and garlic (Allium sativum). LWT - Food Science and Technology, 37(2), 263-268. doi:10.1016/j.lwt.2003.09.001 es_ES
dc.description.references Borges, A., Ferreira, C., Saavedra, M. J., & Simões, M. (2013). Antibacterial Activity and Mode of Action of Ferulic and Gallic Acids Against Pathogenic Bacteria. Microbial Drug Resistance, 19(4), 256-265. doi:10.1089/mdr.2012.0244 es_ES
dc.description.references Braun, B., Dorgan, J. R., & Dec, S. F. (2006). Infrared Spectroscopic Determination of Lactide Concentration in Polylactide:  An Improved Methodology. Macromolecules, 39(26), 9302-9310. doi:10.1021/ma061922a es_ES
dc.description.references Casasola, R., Thomas, N. L., Trybala, A., & Georgiadou, S. (2014). Electrospun poly lactic acid (PLA) fibres: Effect of different solvent systems on fibre morphology and diameter. Polymer, 55(18), 4728-4737. doi:10.1016/j.polymer.2014.06.032 es_ES
dc.description.references Chen, Y., Lin, J., Fei, Y., Wang, H., & Gao, W. (2010). Preparation and characterization of electrospinning PLA/curcumin composite membranes. Fibers and Polymers, 11(8), 1128-1131. doi:10.1007/s12221-010-1128-z es_ES
dc.description.references Cherpinski, A., Torres-Giner, S., Cabedo, L., & Lagaron, J. M. (2017). Post-processing optimization of electrospun submicron poly(3-hydroxybutyrate) fibers to obtain continuous films of interest in food packaging applications. Food Additives & Contaminants: Part A, 34(10), 1817-1830. doi:10.1080/19440049.2017.1355115 es_ES
dc.description.references Cherpinski, A., Torres-Giner, S., Vartiainen, J., Peresin, M. S., Lahtinen, P., & Lagaron, J. M. (2018). Improving the water resistance of nanocellulose-based films with polyhydroxyalkanoates processed by the electrospinning coating technique. Cellulose, 25(2), 1291-1307. doi:10.1007/s10570-018-1648-z es_ES
dc.description.references Cushnie, T. P. T., & Lamb, A. J. (2005). Antimicrobial activity of flavonoids. International Journal of Antimicrobial Agents, 26(5), 343-356. doi:10.1016/j.ijantimicag.2005.09.002 es_ES
dc.description.references Daglia, M. (2012). Polyphenols as antimicrobial agents. Current Opinion in Biotechnology, 23(2), 174-181. doi:10.1016/j.copbio.2011.08.007 es_ES
dc.description.references Drosou, C. G., Krokida, M. K., & Biliaderis, C. G. (2016). Encapsulation of bioactive compounds through electrospinning/electrospraying and spray drying: A comparative assessment of food-related applications. Drying Technology, 35(2), 139-162. doi:10.1080/07373937.2016.1162797 es_ES
dc.description.references Fernandez, A., Torres-Giner, S., & Lagaron, J. M. (2009). Novel route to stabilization of bioactive antioxidants by encapsulation in electrospun fibers of zein prolamine. Food Hydrocolloids, 23(5), 1427-1432. doi:10.1016/j.foodhyd.2008.10.011 es_ES
dc.description.references Figueroa-Lopez, K. J., Vicente, A. A., Reis, M. A. M., Torres-Giner, S., & Lagaron, J. M. (2019). Antimicrobial and Antioxidant Performance of Various Essential Oils and Natural Extracts and Their Incorporation into Biowaste Derived Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Layers Made from Electrospun Ultrathin Fibers. Nanomaterials, 9(2), 144. doi:10.3390/nano9020144 es_ES
dc.description.references Gamage, G. R., Park, H.-J., & Kim, K. M. (2009). Effectiveness of antimicrobial coated oriented polypropylene/polyethylene films in sprout packaging. Food Research International, 42(7), 832-839. doi:10.1016/j.foodres.2009.03.012 es_ES
dc.description.references Ilić, D., Ristić, I. S., Nikolić, L., Stanković, M., Nikolić, G., Stanojević, L., & Nikolić, V. (2011). Characterization and Release Kinetics of Allylthiosufinate and its Transforments from Poly(d,l-Lactide) Microspheres. Journal of Polymers and the Environment, 20(1), 80-87. doi:10.1007/s10924-011-0337-x es_ES
dc.description.references Ivanova, A., Mikhova, B., Najdenski, H., Tsvetkova, I., & Kostova, I. (2009). Chemical Composition and Antimicrobial Activity of Wild Garlic Allium ursinum of Bulgarian Origin. Natural Product Communications, 4(8), 1934578X0900400. doi:10.1177/1934578x0900400808 es_ES
dc.description.references Jin, G., Prabhakaran, M. P., Kai, D., Annamalai, S. K., Arunachalam, K. D., & Ramakrishna, S. (2013). Tissue engineered plant extracts as nanofibrous wound dressing. Biomaterials, 34(3), 724-734. doi:10.1016/j.biomaterials.2012.10.026 es_ES
dc.description.references Kayaci, F., Umu, O. C. O., Tekinay, T., & Uyar, T. (2013). Antibacterial Electrospun Poly(lactic acid) (PLA) Nanofibrous Webs Incorporating Triclosan/Cyclodextrin Inclusion Complexes. Journal of Agricultural and Food Chemistry, 61(16), 3901-3908. doi:10.1021/jf400440b es_ES
dc.description.references Khoddami, A., Wilkes, M., & Roberts, T. (2013). Techniques for Analysis of Plant Phenolic Compounds. Molecules, 18(2), 2328-2375. doi:10.3390/molecules18022328 es_ES
dc.description.references Kriegel, C., Kit, K. M., McClements, D. J., & Weiss, J. (2008). Nanofibers as Carrier Systems for Antimicrobial Microemulsions. Part I: Fabrication and Characterization. Langmuir, 25(2), 1154-1161. doi:10.1021/la803058c es_ES
dc.description.references Kyung, K. H. (2012). Antimicrobial properties of allium species. Current Opinion in Biotechnology, 23(2), 142-147. doi:10.1016/j.copbio.2011.08.004 es_ES
dc.description.references Llana-Ruiz-Cabello, M., Pichardo, S., Baños, A., Núñez, C., Bermúdez, J. M., Guillamón, E., … Cameán, A. M. (2015). Characterisation and evaluation of PLA films containing an extract of Allium spp. to be used in the packaging of ready-to-eat salads under controlled atmospheres. LWT - Food Science and Technology, 64(2), 1354-1361. doi:10.1016/j.lwt.2015.07.057 es_ES
dc.description.references López de Dicastillo, C., Bustos, F., Guarda, A., & Galotto, M. J. (2016). Cross-linked methyl cellulose films with murta fruit extract for antioxidant and antimicrobial active food packaging. Food Hydrocolloids, 60, 335-344. doi:10.1016/j.foodhyd.2016.03.020 es_ES
dc.description.references López de Dicastillo, C., Nerín, C., Alfaro, P., Catalá, R., Gavara, R., & Hernández-Muñoz, P. (2011). Development of New Antioxidant Active Packaging Films Based on Ethylene Vinyl Alcohol Copolymer (EVOH) and Green Tea Extract. Journal of Agricultural and Food Chemistry, 59(14), 7832-7840. doi:10.1021/jf201246g es_ES
dc.description.references Montava-Jordà, S., Quiles-Carrillo, L., Richart, N., Torres-Giner, S., & Montanes, N. (2019). Enhanced Interfacial Adhesion of Polylactide/Poly(ε-caprolactone)/Walnut Shell Flour Composites by Reactive Extrusion with Maleinized Linseed Oil. Polymers, 11(5), 758. doi:10.3390/polym11050758 es_ES
dc.description.references Pilić,. es_ES
dc.description.references Pereira, A., Ferreira, I., Marcelino, F., Valentão, P., Andrade, P., Seabra, R., … Pereira, J. (2007). Phenolic Compounds and Antimicrobial Activity of Olive (Olea europaea L. Cv. Cobrançosa) Leaves. Molecules, 12(5), 1153-1162. doi:10.3390/12051153 es_ES
dc.description.references Perry, C. C., Weatherly, M., Beale, T., & Randriamahefa, A. (2009). Atomic force microscopy study of the antimicrobial activity of aqueous garlicversusampicillin againstEscherichia coliandStaphylococcus aureus. Journal of the Science of Food and Agriculture, 89(6), 958-964. doi:10.1002/jsfa.3538 es_ES
dc.description.references Quiles-Carrillo, L., Montanes, N., Garcia-Garcia, D., Carbonell-Verdu, A., Balart, R., & Torres-Giner, S. (2018). Effect of different compatibilizers on injection-molded green composite pieces based on polylactide filled with almond shell flour. Composites Part B: Engineering, 147, 76-85. doi:10.1016/j.compositesb.2018.04.017 es_ES
dc.description.references Quiles-Carrillo, L., Montanes, N., Sammon, C., Balart, R., & Torres-Giner, S. (2018). Compatibilization of highly sustainable polylactide/almond shell flour composites by reactive extrusion with maleinized linseed oil. Industrial Crops and Products, 111, 878-888. doi:10.1016/j.indcrop.2017.10.062 es_ES
dc.description.references Quiles-Carrillo, L., Montanes, N., Lagaron, J. M., Balart, R., & Torres-Giner, S. (2018). In Situ Compatibilization of Biopolymer Ternary Blends by Reactive Extrusion with Low-Functionality Epoxy-Based Styrene–Acrylic Oligomer. Journal of Polymers and the Environment, 27(1), 84-96. doi:10.1007/s10924-018-1324-2 es_ES
dc.description.references Radusin, T., Tomšik, A., Šarić, L., Ristić, I., Giacinti Baschetti, M., Minelli, M., & Novaković, A. (2018). Hybrid Pla/wild garlic antimicrobial composite films for food packaging application. Polymer Composites, 40(3), 893-900. doi:10.1002/pc.24755 es_ES
dc.description.references Rauha, J.-P., Remes, S., Heinonen, M., Hopia, A., Kähkönen, M., Kujala, T., … Vuorela, P. (2000). Antimicrobial effects of Finnish plant extracts containing flavonoids and other phenolic compounds. International Journal of Food Microbiology, 56(1), 3-12. doi:10.1016/s0168-1605(00)00218-x es_ES
dc.description.references Ríos, J. L., & Recio, M. C. (2005). Medicinal plants and antimicrobial activity. Journal of Ethnopharmacology, 100(1-2), 80-84. doi:10.1016/j.jep.2005.04.025 es_ES
dc.description.references Sobolewska, D., Podolak, I., & Makowska-Wąs, J. (2013). Allium ursinum: botanical, phytochemical and pharmacological overview. Phytochemistry Reviews, 14(1), 81-97. doi:10.1007/s11101-013-9334-0 es_ES
dc.description.references Su, Y., Zhang, C., Wang, Y., & Li, P. (2011). Antibacterial property and mechanism of a novel Pu-erh tea nanofibrous membrane. Applied Microbiology and Biotechnology, 93(4), 1663-1671. doi:10.1007/s00253-011-3501-2 es_ES
dc.description.references Sun, L., Zhang, C., & Li, P. (2011). Characterization, Antimicrobial Activity, and Mechanism of a High-Performance (−)-Epigallocatechin-3-gallate (EGCG)−CuII/Polyvinyl Alcohol (PVA) Nanofibrous Membrane. Journal of Agricultural and Food Chemistry, 59(9), 5087-5092. doi:10.1021/jf200580t es_ES
dc.description.references Suppakul, P., Miltz, J., Sonneveld, K., & Bigger, S. W. (2003). Antimicrobial Properties of Basil and Its Possible Application in Food Packaging. Journal of Agricultural and Food Chemistry, 51(11), 3197-3207. doi:10.1021/jf021038t es_ES
dc.description.references Tomšik, A., Pavlić, B., Vladić, J., Ramić, M., Brindza, J., & Vidović, S. (2016). Optimization of ultrasound-assisted extraction of bioactive compounds from wild garlic (Allium ursinum L.). Ultrasonics Sonochemistry, 29, 502-511. doi:10.1016/j.ultsonch.2015.11.005 es_ES
dc.description.references Tomšik, A., Šarić, L., Bertoni, S., Protti, M., Albertini, B., Mercolini, L., & Passerini, N. (2019). Encapsulations of wild garlic (Allium ursinum L.) extract using spray congealing technology. Food Research International, 119, 941-950. doi:10.1016/j.foodres.2018.10.081 es_ES
dc.description.references Torres-Giner, S., Gimeno-Alcañiz, J. V., Ocio, M. J., & Lagaron, J. M. (2011). Optimization of electrospun polylactide-based ultrathin fibers for osteoconductive bone scaffolds. Journal of Applied Polymer Science, 122(2), 914-925. doi:10.1002/app.34208 es_ES
dc.description.references Torres-Giner, S., Pérez-Masiá, R., & Lagaron, J. M. (2016). A review on electrospun polymer nanostructures as advanced bioactive platforms. Polymer Engineering & Science, 56(5), 500-527. doi:10.1002/pen.24274 es_ES
dc.description.references Torres-Giner, S., Martinez-Abad, A., & Lagaron, J. M. (2014). Zein-based ultrathin fibers containing ceramic nanofillers obtained by electrospinning. II. Mechanical properties, gas barrier, and sustained release capacity of biocide thymol in multilayer polylactide films. Journal of Applied Polymer Science, 131(18), n/a-n/a. doi:10.1002/app.40768 es_ES
dc.description.references Torres-Giner, S., Wilkanowicz, S., Melendez-Rodriguez, B., & Lagaron, J. M. (2017). Nanoencapsulation of Aloe vera in Synthetic and Naturally Occurring Polymers by Electrohydrodynamic Processing of Interest in Food Technology and Bioactive Packaging. Journal of Agricultural and Food Chemistry, 65(22), 4439-4448. doi:10.1021/acs.jafc.7b01393 es_ES
dc.description.references Vega-Lugo, A.-C., & Lim, L.-T. (2009). Controlled release of allyl isothiocyanate using soy protein and poly(lactic acid) electrospun fibers. Food Research International, 42(8), 933-940. doi:10.1016/j.foodres.2009.05.005 es_ES
dc.description.references Wang, L.-F., & Rhim, J.-W. (2016). Grapefruit seed extract incorporated antimicrobial LDPE and PLA films: Effect of type of polymer matrix. LWT, 74, 338-345. doi:10.1016/j.lwt.2016.07.066 es_ES
dc.description.references Yang, F., Xu, C. Y., Kotaki, M., Wang, S., & Ramakrishna, S. (2004). Characterization of neural stem cells on electrospun poly(L-lactic acid) nanofibrous scaffold. Journal of Biomaterials Science, Polymer Edition, 15(12), 1483-1497. doi:10.1163/1568562042459733 es_ES
dc.description.references Yildirim, S., Röcker, B., Pettersen, M. K., Nilsen-Nygaard, J., Ayhan, Z., Rutkaite, R., … Coma, V. (2017). Active Packaging Applications for Food. Comprehensive Reviews in Food Science and Food Safety, 17(1), 165-199. doi:10.1111/1541-4337.12322 es_ES
dc.description.references Zhu, B., Li, J., He, Y., Yamane, H., Kimura, Y., Nishida, H., & Inoue, Y. (2004). Effect of steric hindrance on hydrogen-bonding interaction between polyesters and natural polyphenol catechin. Journal of Applied Polymer Science, 91(6), 3565-3573. doi:10.1002/app.13581 es_ES
dc.subject.ods 12.- Garantizar las pautas de consumo y de producción sostenibles es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem