- -

Preparation, characterization and antimicrobial properties of electrospun polylactide films containing Allium ursinum L. extract

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Preparation, characterization and antimicrobial properties of electrospun polylactide films containing Allium ursinum L. extract

Mostrar el registro completo del ítem

Radusin, T.; Torres-Giner, S.; Stupar, A.; Ristic, I.; Miletic, A.; Novakovic, A.; Lagaron, JM. (2019). Preparation, characterization and antimicrobial properties of electrospun polylactide films containing Allium ursinum L. extract. Food Packaging and Shelf Life. 21:1-9. https://doi.org/10.1016/j.fpsl.2019.100357

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/166272

Ficheros en el ítem

Metadatos del ítem

Título: Preparation, characterization and antimicrobial properties of electrospun polylactide films containing Allium ursinum L. extract
Autor: Radusin, Tanja Torres-Giner, S. Stupar, Alena Ristic, Ivan Miletic, Aleksandra Novakovic, Aleksandra Lagaron, Jose M.
Entidad UPV: Universitat Politècnica de València. Instituto Universitario de Ingeniería de Alimentos para el Desarrollo - Institut Universitari d'Enginyeria d'Aliments per al Desenvolupament
Fecha difusión:
Resumen:
[EN] Novel active films of polylactide (PLA) containing extract of Allium ursinum L. (AU), also called wild garlic, at 10 wt% were succesfully prepared by the electrospinning technology. Electrospinning of the AU-containing ...[+]
Palabras clave: Electrospinning , Natural extracts , Nanoencapsulation , Active food packaging
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Food Packaging and Shelf Life. (issn: 2214-2894 )
DOI: 10.1016/j.fpsl.2019.100357
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.fpsl.2019.100357
Código del Proyecto:
info:eu-repo/grantAgreement/EC/H2020/692276/EU/Innovative Food Product Development Cycle: Frame for Stepping Up Research Excellence of FINS - FOODstars/
info:eu-repo/grantAgreement/COST//FP1405/EU/Active and intelligent fibre-based packaging - innovation and market introduction (ActInPak)/
info:eu-repo/grantAgreement/EC/H2020/773872/EU/HIGH PERFORMANCE POLYHYDROXYALKANOATES BASED PACKAGING TO MINIMISE FOOD WASTE/
info:eu-repo/grantAgreement/MINECO//IJCI-2016-29675/
info:eu-repo/grantAgreement/MINECO//AGL2015-63855-C2-1-R/ES/DESARROLLO DE UN CONCEPTO DE ENVASE MULTICAPA ALIMENTARIO DE ALTA BARRERA Y CON CARACTER ACTIVO Y BIOACTIVO DERIVADO DE SUBPRODUCTOS ALIMENTARIOS/
Agradecimientos:
This paper has been supported by the COST Action FP1405 Active and intelligent fiber-based packaging - innovation and market introduction (ActInPak), FOODStars project Food Product Development Cycle: Frame for stepping Up ...[+]
Tipo: Artículo

References

Barile, E., Bonanomi, G., Antignani, V., Zolfaghari, B., Sajjadi, S. E., Scala, F., & Lanzotti, V. (2007). Saponins from Allium minutiflorum with antifungal activity. Phytochemistry, 68(5), 596-603. doi:10.1016/j.phytochem.2006.10.009

Belovic, M., Mastilovic, J., & Kevresan, Z. (2014). Change of surface colour parameters during storage of paprika (Capsicum annuum L.). Food and Feed Research, 41(2), 85-92. doi:10.5937/ffr1402085b

Benkeblia, N. (2004). Antimicrobial activity of essential oil extracts of various onions (Allium cepa) and garlic (Allium sativum). LWT - Food Science and Technology, 37(2), 263-268. doi:10.1016/j.lwt.2003.09.001 [+]
Barile, E., Bonanomi, G., Antignani, V., Zolfaghari, B., Sajjadi, S. E., Scala, F., & Lanzotti, V. (2007). Saponins from Allium minutiflorum with antifungal activity. Phytochemistry, 68(5), 596-603. doi:10.1016/j.phytochem.2006.10.009

Belovic, M., Mastilovic, J., & Kevresan, Z. (2014). Change of surface colour parameters during storage of paprika (Capsicum annuum L.). Food and Feed Research, 41(2), 85-92. doi:10.5937/ffr1402085b

Benkeblia, N. (2004). Antimicrobial activity of essential oil extracts of various onions (Allium cepa) and garlic (Allium sativum). LWT - Food Science and Technology, 37(2), 263-268. doi:10.1016/j.lwt.2003.09.001

Borges, A., Ferreira, C., Saavedra, M. J., & Simões, M. (2013). Antibacterial Activity and Mode of Action of Ferulic and Gallic Acids Against Pathogenic Bacteria. Microbial Drug Resistance, 19(4), 256-265. doi:10.1089/mdr.2012.0244

Braun, B., Dorgan, J. R., & Dec, S. F. (2006). Infrared Spectroscopic Determination of Lactide Concentration in Polylactide:  An Improved Methodology. Macromolecules, 39(26), 9302-9310. doi:10.1021/ma061922a

Casasola, R., Thomas, N. L., Trybala, A., & Georgiadou, S. (2014). Electrospun poly lactic acid (PLA) fibres: Effect of different solvent systems on fibre morphology and diameter. Polymer, 55(18), 4728-4737. doi:10.1016/j.polymer.2014.06.032

Chen, Y., Lin, J., Fei, Y., Wang, H., & Gao, W. (2010). Preparation and characterization of electrospinning PLA/curcumin composite membranes. Fibers and Polymers, 11(8), 1128-1131. doi:10.1007/s12221-010-1128-z

Cherpinski, A., Torres-Giner, S., Cabedo, L., & Lagaron, J. M. (2017). Post-processing optimization of electrospun submicron poly(3-hydroxybutyrate) fibers to obtain continuous films of interest in food packaging applications. Food Additives & Contaminants: Part A, 34(10), 1817-1830. doi:10.1080/19440049.2017.1355115

Cherpinski, A., Torres-Giner, S., Vartiainen, J., Peresin, M. S., Lahtinen, P., & Lagaron, J. M. (2018). Improving the water resistance of nanocellulose-based films with polyhydroxyalkanoates processed by the electrospinning coating technique. Cellulose, 25(2), 1291-1307. doi:10.1007/s10570-018-1648-z

Cushnie, T. P. T., & Lamb, A. J. (2005). Antimicrobial activity of flavonoids. International Journal of Antimicrobial Agents, 26(5), 343-356. doi:10.1016/j.ijantimicag.2005.09.002

Daglia, M. (2012). Polyphenols as antimicrobial agents. Current Opinion in Biotechnology, 23(2), 174-181. doi:10.1016/j.copbio.2011.08.007

Drosou, C. G., Krokida, M. K., & Biliaderis, C. G. (2016). Encapsulation of bioactive compounds through electrospinning/electrospraying and spray drying: A comparative assessment of food-related applications. Drying Technology, 35(2), 139-162. doi:10.1080/07373937.2016.1162797

Fernandez, A., Torres-Giner, S., & Lagaron, J. M. (2009). Novel route to stabilization of bioactive antioxidants by encapsulation in electrospun fibers of zein prolamine. Food Hydrocolloids, 23(5), 1427-1432. doi:10.1016/j.foodhyd.2008.10.011

Figueroa-Lopez, K. J., Vicente, A. A., Reis, M. A. M., Torres-Giner, S., & Lagaron, J. M. (2019). Antimicrobial and Antioxidant Performance of Various Essential Oils and Natural Extracts and Their Incorporation into Biowaste Derived Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Layers Made from Electrospun Ultrathin Fibers. Nanomaterials, 9(2), 144. doi:10.3390/nano9020144

Gamage, G. R., Park, H.-J., & Kim, K. M. (2009). Effectiveness of antimicrobial coated oriented polypropylene/polyethylene films in sprout packaging. Food Research International, 42(7), 832-839. doi:10.1016/j.foodres.2009.03.012

Ilić, D., Ristić, I. S., Nikolić, L., Stanković, M., Nikolić, G., Stanojević, L., & Nikolić, V. (2011). Characterization and Release Kinetics of Allylthiosufinate and its Transforments from Poly(d,l-Lactide) Microspheres. Journal of Polymers and the Environment, 20(1), 80-87. doi:10.1007/s10924-011-0337-x

Ivanova, A., Mikhova, B., Najdenski, H., Tsvetkova, I., & Kostova, I. (2009). Chemical Composition and Antimicrobial Activity of Wild Garlic Allium ursinum of Bulgarian Origin. Natural Product Communications, 4(8), 1934578X0900400. doi:10.1177/1934578x0900400808

Jin, G., Prabhakaran, M. P., Kai, D., Annamalai, S. K., Arunachalam, K. D., & Ramakrishna, S. (2013). Tissue engineered plant extracts as nanofibrous wound dressing. Biomaterials, 34(3), 724-734. doi:10.1016/j.biomaterials.2012.10.026

Kayaci, F., Umu, O. C. O., Tekinay, T., & Uyar, T. (2013). Antibacterial Electrospun Poly(lactic acid) (PLA) Nanofibrous Webs Incorporating Triclosan/Cyclodextrin Inclusion Complexes. Journal of Agricultural and Food Chemistry, 61(16), 3901-3908. doi:10.1021/jf400440b

Khoddami, A., Wilkes, M., & Roberts, T. (2013). Techniques for Analysis of Plant Phenolic Compounds. Molecules, 18(2), 2328-2375. doi:10.3390/molecules18022328

Kriegel, C., Kit, K. M., McClements, D. J., & Weiss, J. (2008). Nanofibers as Carrier Systems for Antimicrobial Microemulsions. Part I: Fabrication and Characterization. Langmuir, 25(2), 1154-1161. doi:10.1021/la803058c

Kyung, K. H. (2012). Antimicrobial properties of allium species. Current Opinion in Biotechnology, 23(2), 142-147. doi:10.1016/j.copbio.2011.08.004

Llana-Ruiz-Cabello, M., Pichardo, S., Baños, A., Núñez, C., Bermúdez, J. M., Guillamón, E., … Cameán, A. M. (2015). Characterisation and evaluation of PLA films containing an extract of Allium spp. to be used in the packaging of ready-to-eat salads under controlled atmospheres. LWT - Food Science and Technology, 64(2), 1354-1361. doi:10.1016/j.lwt.2015.07.057

López de Dicastillo, C., Bustos, F., Guarda, A., & Galotto, M. J. (2016). Cross-linked methyl cellulose films with murta fruit extract for antioxidant and antimicrobial active food packaging. Food Hydrocolloids, 60, 335-344. doi:10.1016/j.foodhyd.2016.03.020

López de Dicastillo, C., Nerín, C., Alfaro, P., Catalá, R., Gavara, R., & Hernández-Muñoz, P. (2011). Development of New Antioxidant Active Packaging Films Based on Ethylene Vinyl Alcohol Copolymer (EVOH) and Green Tea Extract. Journal of Agricultural and Food Chemistry, 59(14), 7832-7840. doi:10.1021/jf201246g

Montava-Jordà, S., Quiles-Carrillo, L., Richart, N., Torres-Giner, S., & Montanes, N. (2019). Enhanced Interfacial Adhesion of Polylactide/Poly(ε-caprolactone)/Walnut Shell Flour Composites by Reactive Extrusion with Maleinized Linseed Oil. Polymers, 11(5), 758. doi:10.3390/polym11050758

Pilić,.

Pereira, A., Ferreira, I., Marcelino, F., Valentão, P., Andrade, P., Seabra, R., … Pereira, J. (2007). Phenolic Compounds and Antimicrobial Activity of Olive (Olea europaea L. Cv. Cobrançosa) Leaves. Molecules, 12(5), 1153-1162. doi:10.3390/12051153

Perry, C. C., Weatherly, M., Beale, T., & Randriamahefa, A. (2009). Atomic force microscopy study of the antimicrobial activity of aqueous garlicversusampicillin againstEscherichia coliandStaphylococcus aureus. Journal of the Science of Food and Agriculture, 89(6), 958-964. doi:10.1002/jsfa.3538

Quiles-Carrillo, L., Montanes, N., Garcia-Garcia, D., Carbonell-Verdu, A., Balart, R., & Torres-Giner, S. (2018). Effect of different compatibilizers on injection-molded green composite pieces based on polylactide filled with almond shell flour. Composites Part B: Engineering, 147, 76-85. doi:10.1016/j.compositesb.2018.04.017

Quiles-Carrillo, L., Montanes, N., Sammon, C., Balart, R., & Torres-Giner, S. (2018). Compatibilization of highly sustainable polylactide/almond shell flour composites by reactive extrusion with maleinized linseed oil. Industrial Crops and Products, 111, 878-888. doi:10.1016/j.indcrop.2017.10.062

Quiles-Carrillo, L., Montanes, N., Lagaron, J. M., Balart, R., & Torres-Giner, S. (2018). In Situ Compatibilization of Biopolymer Ternary Blends by Reactive Extrusion with Low-Functionality Epoxy-Based Styrene–Acrylic Oligomer. Journal of Polymers and the Environment, 27(1), 84-96. doi:10.1007/s10924-018-1324-2

Radusin, T., Tomšik, A., Šarić, L., Ristić, I., Giacinti Baschetti, M., Minelli, M., & Novaković, A. (2018). Hybrid Pla/wild garlic antimicrobial composite films for food packaging application. Polymer Composites, 40(3), 893-900. doi:10.1002/pc.24755

Rauha, J.-P., Remes, S., Heinonen, M., Hopia, A., Kähkönen, M., Kujala, T., … Vuorela, P. (2000). Antimicrobial effects of Finnish plant extracts containing flavonoids and other phenolic compounds. International Journal of Food Microbiology, 56(1), 3-12. doi:10.1016/s0168-1605(00)00218-x

Ríos, J. L., & Recio, M. C. (2005). Medicinal plants and antimicrobial activity. Journal of Ethnopharmacology, 100(1-2), 80-84. doi:10.1016/j.jep.2005.04.025

Sobolewska, D., Podolak, I., & Makowska-Wąs, J. (2013). Allium ursinum: botanical, phytochemical and pharmacological overview. Phytochemistry Reviews, 14(1), 81-97. doi:10.1007/s11101-013-9334-0

Su, Y., Zhang, C., Wang, Y., & Li, P. (2011). Antibacterial property and mechanism of a novel Pu-erh tea nanofibrous membrane. Applied Microbiology and Biotechnology, 93(4), 1663-1671. doi:10.1007/s00253-011-3501-2

Sun, L., Zhang, C., & Li, P. (2011). Characterization, Antimicrobial Activity, and Mechanism of a High-Performance (−)-Epigallocatechin-3-gallate (EGCG)−CuII/Polyvinyl Alcohol (PVA) Nanofibrous Membrane. Journal of Agricultural and Food Chemistry, 59(9), 5087-5092. doi:10.1021/jf200580t

Suppakul, P., Miltz, J., Sonneveld, K., & Bigger, S. W. (2003). Antimicrobial Properties of Basil and Its Possible Application in Food Packaging. Journal of Agricultural and Food Chemistry, 51(11), 3197-3207. doi:10.1021/jf021038t

Tomšik, A., Pavlić, B., Vladić, J., Ramić, M., Brindza, J., & Vidović, S. (2016). Optimization of ultrasound-assisted extraction of bioactive compounds from wild garlic (Allium ursinum L.). Ultrasonics Sonochemistry, 29, 502-511. doi:10.1016/j.ultsonch.2015.11.005

Tomšik, A., Šarić, L., Bertoni, S., Protti, M., Albertini, B., Mercolini, L., & Passerini, N. (2019). Encapsulations of wild garlic (Allium ursinum L.) extract using spray congealing technology. Food Research International, 119, 941-950. doi:10.1016/j.foodres.2018.10.081

Torres-Giner, S., Gimeno-Alcañiz, J. V., Ocio, M. J., & Lagaron, J. M. (2011). Optimization of electrospun polylactide-based ultrathin fibers for osteoconductive bone scaffolds. Journal of Applied Polymer Science, 122(2), 914-925. doi:10.1002/app.34208

Torres-Giner, S., Pérez-Masiá, R., & Lagaron, J. M. (2016). A review on electrospun polymer nanostructures as advanced bioactive platforms. Polymer Engineering & Science, 56(5), 500-527. doi:10.1002/pen.24274

Torres-Giner, S., Martinez-Abad, A., & Lagaron, J. M. (2014). Zein-based ultrathin fibers containing ceramic nanofillers obtained by electrospinning. II. Mechanical properties, gas barrier, and sustained release capacity of biocide thymol in multilayer polylactide films. Journal of Applied Polymer Science, 131(18), n/a-n/a. doi:10.1002/app.40768

Torres-Giner, S., Wilkanowicz, S., Melendez-Rodriguez, B., & Lagaron, J. M. (2017). Nanoencapsulation of Aloe vera in Synthetic and Naturally Occurring Polymers by Electrohydrodynamic Processing of Interest in Food Technology and Bioactive Packaging. Journal of Agricultural and Food Chemistry, 65(22), 4439-4448. doi:10.1021/acs.jafc.7b01393

Vega-Lugo, A.-C., & Lim, L.-T. (2009). Controlled release of allyl isothiocyanate using soy protein and poly(lactic acid) electrospun fibers. Food Research International, 42(8), 933-940. doi:10.1016/j.foodres.2009.05.005

Wang, L.-F., & Rhim, J.-W. (2016). Grapefruit seed extract incorporated antimicrobial LDPE and PLA films: Effect of type of polymer matrix. LWT, 74, 338-345. doi:10.1016/j.lwt.2016.07.066

Yang, F., Xu, C. Y., Kotaki, M., Wang, S., & Ramakrishna, S. (2004). Characterization of neural stem cells on electrospun poly(L-lactic acid) nanofibrous scaffold. Journal of Biomaterials Science, Polymer Edition, 15(12), 1483-1497. doi:10.1163/1568562042459733

Yildirim, S., Röcker, B., Pettersen, M. K., Nilsen-Nygaard, J., Ayhan, Z., Rutkaite, R., … Coma, V. (2017). Active Packaging Applications for Food. Comprehensive Reviews in Food Science and Food Safety, 17(1), 165-199. doi:10.1111/1541-4337.12322

Zhu, B., Li, J., He, Y., Yamane, H., Kimura, Y., Nishida, H., & Inoue, Y. (2004). Effect of steric hindrance on hydrogen-bonding interaction between polyesters and natural polyphenol catechin. Journal of Applied Polymer Science, 91(6), 3565-3573. doi:10.1002/app.13581

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem