- -

A Riemann manifold structure of the spectra of weighted algebras of holomorphic functions

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A Riemann manifold structure of the spectra of weighted algebras of holomorphic functions

Mostrar el registro completo del ítem

Carando, D.; Garcia, D.; Maestre, M.; Sevilla Peris, P. (2009). A Riemann manifold structure of the spectra of weighted algebras of holomorphic functions. Topology. 48(2-4):54-65. https://doi.org/10.1016/j.top.2009.11.003

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/166274

Ficheros en el ítem

Metadatos del ítem

Título: A Riemann manifold structure of the spectra of weighted algebras of holomorphic functions
Autor: Carando, Daniel Garcia, Domingo Maestre, Manuel Sevilla Peris, Pablo
Entidad UPV: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Fecha difusión:
Resumen:
[EN] In this paper we give general conditions on a countable family V of weights on an unbounded open set U in a complex Banach space X such that the weighted space HV (U) of holomorphic functions on U has a Frechet algebra ...[+]
Palabras clave: Weighted space of holomorphic functions , Frechet algebra , Analytic manifold structure , Symmetrically regular Banach space
Derechos de uso: Reserva de todos los derechos
Fuente:
Topology. (issn: 0040-9383 )
DOI: 10.1016/j.top.2009.11.003
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.top.2009.11.003
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//MTM2008-03211/ES/GEOMETRIA Y DIFERENCIACION EN ESPACIOS DE BANACH. ANALISIS COMPLEJO EN DIMENSION FINITA E INFINITA./
info:eu-repo/grantAgreement/ANPCyT//PICT-05-17-33042/
info:eu-repo/grantAgreement/UBA//X038/
info:eu-repo/grantAgreement/ANPCyT//PICT-2006-00587/
info:eu-repo/grantAgreement/Generalitat Valenciana//PROMETEO08%2F2008%2F101/ES/Análisis funcional, teoría de operadores y aplicaciones/
Agradecimientos:
We warmly thank Antonio Galbis for providing us with Example 2.6. We also thank the referee for useful comments which have improved the paper. The first author was partially supported by ANPCyT PICT 05 17-33042, UBACyT ...[+]
Tipo: Artículo

References

Berenstein, C. A., Li, B. Q., & Vidras, A. (1995). Geometric Characterization of Interpolating Varieties for the (FN)-Space A0p of Entire Functions. Canadian Journal of Mathematics, 47(1), 28-43. doi:10.4153/cjm-1995-002-9

Braun, R. W. (1987). Weighted algebras of entire functions in which each closed ideal admits two algebraic generators. Michigan Mathematical Journal, 34(3). doi:10.1307/mmj/1029003623

Meise, R., & Taylor, B. (1987). Sequence space representations for (FN)-algebras of entire functions modulo closed ideals. Studia Mathematica, 85(3), 203-227. doi:10.4064/sm-85-3-203-227 [+]
Berenstein, C. A., Li, B. Q., & Vidras, A. (1995). Geometric Characterization of Interpolating Varieties for the (FN)-Space A0p of Entire Functions. Canadian Journal of Mathematics, 47(1), 28-43. doi:10.4153/cjm-1995-002-9

Braun, R. W. (1987). Weighted algebras of entire functions in which each closed ideal admits two algebraic generators. Michigan Mathematical Journal, 34(3). doi:10.1307/mmj/1029003623

Meise, R., & Taylor, B. (1987). Sequence space representations for (FN)-algebras of entire functions modulo closed ideals. Studia Mathematica, 85(3), 203-227. doi:10.4064/sm-85-3-203-227

Carando, D., & Sevilla-Peris, P. (2008). Spectra of weighted algebras of holomorphic functions. Mathematische Zeitschrift, 263(4), 887-902. doi:10.1007/s00209-008-0444-0

Aron, R. M., Galindo, P., García, D., & Maestre, M. (1996). Regularity and Algebras of Analytic Functions in Infinite Dimensions. Transactions of the American Mathematical Society, 348(2), 543-559. doi:10.1090/s0002-9947-96-01553-x

Bierstedt, K. D., Bonet, J., & Galbis, A. (1993). Weighted spaces of holomorphic functions on balanced domains. Michigan Mathematical Journal, 40(2). doi:10.1307/mmj/1029004753

Bierstedt, K.-D., Meise, R., & Summers, W. H. (1982). A projective description of weighted inductive limits. Transactions of the American Mathematical Society, 272(1), 107-107. doi:10.1090/s0002-9947-1982-0656483-9

Bierstedt, K. D., & Summers, W. H. (1993). Biduals of weighted banach spaces of analytic functions. Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics, 54(1), 70-79. doi:10.1017/s1446788700036983

Bonet, J., Dománski, P., & Lindström, M. (1999). Essential Norm and Weak Compactness of Composition Operators on Weighted Banach Spaces of Analytic Functions. Canadian Mathematical Bulletin, 42(2), 139-148. doi:10.4153/cmb-1999-016-x

Bonet, J., Domański, P., Lindström, M., & Taskinen, J. (1998). Composition operators between weighted Banach spaces of analytic functions. Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics, 64(1), 101-118. doi:10.1017/s1446788700001336

Bonet, J., & Friz, M. (2002). Weakly Compact Composition Operators on Locally Convex Spaces. Mathematische Nachrichten, 245(1), 26-44. doi:10.1002/1522-2616(200211)245:1<26::aid-mana26>3.0.co;2-j

Carando, D., García, D., & Maestre, M. (2005). Homomorphisms and composition operators on algebras of analytic functions of bounded type. Advances in Mathematics, 197(2), 607-629. doi:10.1016/j.aim.2004.10.018

Davie, A. M., & Gamelin, T. W. (1989). A theorem on polynomial-star approximation. Proceedings of the American Mathematical Society, 106(2), 351-351. doi:10.1090/s0002-9939-1989-0947313-8

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem