Berenstein, C. A., Li, B. Q., & Vidras, A. (1995). Geometric Characterization of Interpolating Varieties for the (FN)-Space A0p of Entire Functions. Canadian Journal of Mathematics, 47(1), 28-43. doi:10.4153/cjm-1995-002-9
Braun, R. W. (1987). Weighted algebras of entire functions in which each closed ideal admits two algebraic generators. Michigan Mathematical Journal, 34(3). doi:10.1307/mmj/1029003623
Meise, R., & Taylor, B. (1987). Sequence space representations for (FN)-algebras of entire functions modulo closed ideals. Studia Mathematica, 85(3), 203-227. doi:10.4064/sm-85-3-203-227
[+]
Berenstein, C. A., Li, B. Q., & Vidras, A. (1995). Geometric Characterization of Interpolating Varieties for the (FN)-Space A0p of Entire Functions. Canadian Journal of Mathematics, 47(1), 28-43. doi:10.4153/cjm-1995-002-9
Braun, R. W. (1987). Weighted algebras of entire functions in which each closed ideal admits two algebraic generators. Michigan Mathematical Journal, 34(3). doi:10.1307/mmj/1029003623
Meise, R., & Taylor, B. (1987). Sequence space representations for (FN)-algebras of entire functions modulo closed ideals. Studia Mathematica, 85(3), 203-227. doi:10.4064/sm-85-3-203-227
Carando, D., & Sevilla-Peris, P. (2008). Spectra of weighted algebras of holomorphic functions. Mathematische Zeitschrift, 263(4), 887-902. doi:10.1007/s00209-008-0444-0
Aron, R. M., Galindo, P., García, D., & Maestre, M. (1996). Regularity and Algebras of Analytic Functions in Infinite Dimensions. Transactions of the American Mathematical Society, 348(2), 543-559. doi:10.1090/s0002-9947-96-01553-x
Bierstedt, K. D., Bonet, J., & Galbis, A. (1993). Weighted spaces of holomorphic functions on balanced domains. Michigan Mathematical Journal, 40(2). doi:10.1307/mmj/1029004753
Bierstedt, K.-D., Meise, R., & Summers, W. H. (1982). A projective description of weighted inductive limits. Transactions of the American Mathematical Society, 272(1), 107-107. doi:10.1090/s0002-9947-1982-0656483-9
Bierstedt, K. D., & Summers, W. H. (1993). Biduals of weighted banach spaces of analytic functions. Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics, 54(1), 70-79. doi:10.1017/s1446788700036983
Bonet, J., Dománski, P., & Lindström, M. (1999). Essential Norm and Weak Compactness of Composition Operators on Weighted Banach Spaces of Analytic Functions. Canadian Mathematical Bulletin, 42(2), 139-148. doi:10.4153/cmb-1999-016-x
Bonet, J., Domański, P., Lindström, M., & Taskinen, J. (1998). Composition operators between weighted Banach spaces of analytic functions. Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics, 64(1), 101-118. doi:10.1017/s1446788700001336
Bonet, J., & Friz, M. (2002). Weakly Compact Composition Operators on Locally Convex Spaces. Mathematische Nachrichten, 245(1), 26-44. doi:10.1002/1522-2616(200211)245:1<26::aid-mana26>3.0.co;2-j
Carando, D., García, D., & Maestre, M. (2005). Homomorphisms and composition operators on algebras of analytic functions of bounded type. Advances in Mathematics, 197(2), 607-629. doi:10.1016/j.aim.2004.10.018
Davie, A. M., & Gamelin, T. W. (1989). A theorem on polynomial-star approximation. Proceedings of the American Mathematical Society, 106(2), 351-351. doi:10.1090/s0002-9939-1989-0947313-8
[-]