- -

Comparative Studies on the Physiological and Biochemical Responses to Salt Stress of Eggplant (Solanum melongena) and Its Rootstock S. torvum

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Comparative Studies on the Physiological and Biochemical Responses to Salt Stress of Eggplant (Solanum melongena) and Its Rootstock S. torvum

Show simple item record

Files in this item

dc.contributor.author Brenes, Marco es_ES
dc.contributor.author Pérez, Jason es_ES
dc.contributor.author González-Orenga, Sara es_ES
dc.contributor.author Solana, Andrea es_ES
dc.contributor.author Boscaiu, Monica es_ES
dc.contributor.author Prohens Tomás, Jaime es_ES
dc.contributor.author Plazas Ávila, María de la O es_ES
dc.contributor.author Fita, Ana es_ES
dc.contributor.author Vicente, Oscar es_ES
dc.date.accessioned 2021-05-14T03:31:08Z
dc.date.available 2021-05-14T03:31:08Z
dc.date.issued 2020-08 es_ES
dc.identifier.uri http://hdl.handle.net/10251/166334
dc.description.abstract [EN] This study investigated the physiological and biochemical responses to salinity stress of Solanum melongena and its wild relative, Solanum torvum, commonly used as eggplant rootstock. Young plants of both species were watered during 25 days with NaCl aqueous solutions at the following four final concentrations: 0 (for the controls), 100, 200, and 300 mM. Plant growth parameters, photosynthetic pigments content, monovalent ion concentrations in roots and leaves, leaf levels of osmolytes (proline and total soluble sugars), oxidative stress markers (MDA and H2O2), non-enzymatic antioxidants (total phenolic compounds and total flavonoids), and enzymatic antioxidant activities superoxide dismutase, catalase, glutathione reductase) were determined after the stress treatments. Salt-induced growth reduction was more significant in S. melongena than in S. torvum, especially at high salt concentrations, indicating a (slightly) higher salt tolerance of the wild species. The mechanisms of tolerance of S. torvum were partly based on the active transport of toxic ions to the leaves at high external salinity and, presumably, a better capacity to store them in the vacuoles, as well as on the accumulation of proline to higher concentrations than in the cultivated eggplant. MDA and H2O2 contents did not vary in response to the salt treatments in S. torvum. However, in S. melongena, MDA content increased by 78% when 300 mM NaCl was applied. No activation of antioxidant mechanisms, accumulation of antioxidant compounds, or increase in the specific activity of antioxidant enzymes in any of the studied species was induced by salinity. The relatively high salt tolerance of S. torvum supports its use as rootstock for eggplant cultivation in salinized soils and as a possible source of salt-tolerance genes for the genetic improvement of cultivated eggplant.This study investigated the physiological and biochemical responses to salinity stress of Solanum melongena and its wild relative, Solanum torvum, commonly used as eggplant rootstock. Young plants of both species were watered during 25 days with NaCl aqueous solutions at the following four final concentrations: 0 (for the controls), 100, 200, and 300 mM. Plant growth parameters, photosynthetic pigments content, monovalent ion concentrations in roots and leaves, leaf levels of osmolytes (proline and total soluble sugars), oxidative stress markers (MDA and H2O2), non-enzymatic antioxidants (total phenolic compounds and total flavonoids), and enzymatic antioxidant activities (superoxide dismutase, catalase, glutathione reductase) were determined after the stress treatments. Salt-induced growth reduction was more significant in S. melongena than in S. torvum, especially at high salt concentrations, indicating a (slightly) higher salt tolerance of the wild species. The mechanisms of tolerance of S. torvum were partly based on the active transport of toxic ions to the leaves at high external salinity and, presumably, a better capacity to store them in the vacuoles, as well as on the accumulation of proline to higher concentrations than in the cultivated eggplant. MDA and H2O2 contents did not vary in response to the salt treatments in S. torvum. However, in S. melongena, MDA content increased by 78% when 300 mM NaCl was applied. No activation of antioxidant mechanisms, accumulation of antioxidant compounds, or increase in the specific activity of antioxidant enzymes in any of the studied species was induced by salinity. The relatively high salt tolerance of S. torvum supports its use as rootstock for eggplant cultivation in salinized soils and as a possible source of salt-tolerance genes for the genetic improvement of cultivated eggplant. es_ES
dc.description.sponsorship This work was undertaken as part of the initiative "Adapting Agriculture to Climate Change: Collecting, Protecting and Preparing CropWild Relatives" which is supported by the Government of Norway and managed by the Global Crop Diversity Trust. For further information, see the project website: http://cwrdiversity.org/.Funding was also received from Ministerio de Ciencia, Innovacion y Universidades, Agencia Estatal de Investigacion and Fondo Europeo de Desarrollo Regional (grant RTI-2018-094592-B-100 from MCIU/AEI/FEDER, UE), European Union's Horizon 2020 Research and Innovation Programme under grant agreement No. 677379 (Linking genetic resources, genomes and phenotypes of Solanaceous crops; G2P-SOL) and Vicerrectorado de Investigacion, Innovacion y Transferencia de la Universitat Politecnica de Valencia (Ayuda a Primeros Proyectos de Investigacion; PAID-06-18). Mariola Plazas is grateful to Generalitat Valenciana and Fondo Social Europeo for a post-doctoral grant (APOSTD/2018/014). Marco Brenes is indebted to the Faculty of Biology of the Costa Rica Institute of Technology for partially supporting his stay in Valencia ("Fondo Solidario y Desarrollo Estudiantil"). es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation UPV/PAID-06-18 es_ES
dc.relation GENERALITAT VALENCIANA/APOSTD/2018/014 es_ES
dc.relation info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-094592-B-I00/ES/INTROGRESION DE TOLERANCIA A LA SEQUIA PROCEDENTE DE ESPECIES SILVESTRES PARA LA MEJORA GENETICA DE LA BERENJENA/ es_ES
dc.relation.ispartof Agriculture es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Salt tolerance es_ES
dc.subject Soil salinity es_ES
dc.subject Vegetative growth es_ES
dc.subject Ion homeostasis es_ES
dc.subject Osmolytes es_ES
dc.subject.classification GENETICA es_ES
dc.subject.classification BIOQUIMICA Y BIOLOGIA MOLECULAR es_ES
dc.subject.classification BOTANICA es_ES
dc.title Comparative Studies on the Physiological and Biochemical Responses to Salt Stress of Eggplant (Solanum melongena) and Its Rootstock S. torvum es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/agriculture10080328 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/677379/EU/Linking genetic resources, genomes and phenotypes of Solanaceous crops/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ecosistemas Agroforestales - Departament d'Ecosistemes Agroforestals es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana - Institut Universitari de Conservació i Millora de l'Agrodiversitat Valenciana es_ES
dc.description.bibliographicCitation Brenes, M.; Pérez, J.; González-Orenga, S.; Solana, A.; Boscaiu, M.; Prohens Tomás, J.; Plazas Ávila, MDLO.... (2020). Comparative Studies on the Physiological and Biochemical Responses to Salt Stress of Eggplant (Solanum melongena) and Its Rootstock S. torvum. Agriculture. 10(8):1-20. https://doi.org/10.3390/agriculture10080328 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/agriculture10080328 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 20 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 10 es_ES
dc.description.issue 8 es_ES
dc.identifier.eissn 2077-0472 es_ES
dc.relation.pasarela S\418531 es_ES
dc.contributor.funder Crop Trust es_ES
dc.contributor.funder European Social Fund es_ES
dc.contributor.funder Government of Norway es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Ministerio de Ciencia, Innovación y Universidades es_ES
dc.description.references Raza, A., Razzaq, A., Mehmood, S., Zou, X., Zhang, X., Lv, Y., & Xu, J. (2019). Impact of Climate Change on Crops Adaptation and Strategies to Tackle Its Outcome: A Review. Plants, 8(2), 34. doi:10.3390/plants8020034 es_ES
dc.description.references Butcher, K., Wick, A. F., DeSutter, T., Chatterjee, A., & Harmon, J. (2016). Soil Salinity: A Threat to Global Food Security. Agronomy Journal, 108(6), 2189-2200. doi:10.2134/agronj2016.06.0368 es_ES
dc.description.references Hanin, M., Ebel, C., Ngom, M., Laplaze, L., & Masmoudi, K. (2016). New Insights on Plant Salt Tolerance Mechanisms and Their Potential Use for Breeding. Frontiers in Plant Science, 7. doi:10.3389/fpls.2016.01787 es_ES
dc.description.references FAOSTAThttp://www.fao.org/faostat/en/#data/QC es_ES
dc.description.references Ünlükara, A., Kurunç, A., Kesmez, G. D., Yurtseven, E., & Suarez, D. L. (2008). Effects of salinity on eggplant (Solanum melongenaL.) growth and evapotranspiration. Irrigation and Drainage, n/a-n/a. doi:10.1002/ird.453 es_ES
dc.description.references Gousset, C., Collonnier, C., Mulya, K., Mariska, I., Rotino, G. L., Besse, P., … Sihachakr, D. (2005). Solanum torvum, as a useful source of resistance against bacterial and fungal diseases for improvement of eggplant (S. melongena L.). Plant Science, 168(2), 319-327. doi:10.1016/j.plantsci.2004.07.034 es_ES
dc.description.references Petran, A., & Hoover, E. (2013). Solanum torvum as a Compatible Rootstock in Interspecific Tomato Grafting. Journal of Horticulture, 01(01). doi:10.4172/2376-0354.1000103 es_ES
dc.description.references Arwiyanto, T., Lwin, K., Maryudani, Y., & Purwantoro, A. (2015). EVALUATION OF LOCAL SOLANUM TORVUM AS A ROOTSTOCK TO CONTROL RALSTONIA SOLANACEARUM IN INDONESIA. Acta Horticulturae, (1086), 101-106. doi:10.17660/actahortic.2015.1086.11 es_ES
dc.description.references Kumar, S., Patel, N., & Saravaiya, S. (2019). Studies on Solanum torvum Swartz rootstock on cultivated eggplant under excess moisture stress. Bangladesh Journal of Botany, 48(2), 297-306. doi:10.3329/bjb.v48i2.47671 es_ES
dc.description.references Munns, R., & Tester, M. (2008). Mechanisms of Salinity Tolerance. Annual Review of Plant Biology, 59(1), 651-681. doi:10.1146/annurev.arplant.59.032607.092911 es_ES
dc.description.references Gupta, B., & Huang, B. (2014). Mechanism of Salinity Tolerance in Plants: Physiological, Biochemical, and Molecular Characterization. International Journal of Genomics, 2014, 1-18. doi:10.1155/2014/701596 es_ES
dc.description.references Al Hassan, M., Chaura, J., Donat-Torres, M. P., Boscaiu, M., & Vicente, O. (2017). Antioxidant responses under salinity and drought in three closely related wild monocots with different ecological optima. AoB PLANTS, 9(2). doi:10.1093/aobpla/plx009 es_ES
dc.description.references Kumari, A., Das, P., Parida, A. K., & Agarwal, P. K. (2015). Proteomics, metabolomics, and ionomics perspectives of salinity tolerance in halophytes. Frontiers in Plant Science, 6. doi:10.3389/fpls.2015.00537 es_ES
dc.description.references Flowers, T. J., & Colmer, T. D. (2008). Salinity tolerance in halophytes*. New Phytologist, 179(4), 945-963. doi:10.1111/j.1469-8137.2008.02531.x es_ES
dc.description.references Szabados, L., & Savouré, A. (2010). Proline: a multifunctional amino acid. Trends in Plant Science, 15(2), 89-97. doi:10.1016/j.tplants.2009.11.009 es_ES
dc.description.references Slama, I., Abdelly, C., Bouchereau, A., Flowers, T., & Savouré, A. (2015). Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress. Annals of Botany, 115(3), 433-447. doi:10.1093/aob/mcu239 es_ES
dc.description.references Apel, K., & Hirt, H. (2004). REACTIVE OXYGEN SPECIES: Metabolism, Oxidative Stress, and Signal Transduction. Annual Review of Plant Biology, 55(1), 373-399. doi:10.1146/annurev.arplant.55.031903.141701 es_ES
dc.description.references Huang, H., Ullah, F., Zhou, D.-X., Yi, M., & Zhao, Y. (2019). Mechanisms of ROS Regulation of Plant Development and Stress Responses. Frontiers in Plant Science, 10. doi:10.3389/fpls.2019.00800 es_ES
dc.description.references Shabala, S. (2009). Salinity and programmed cell death: unravelling mechanisms for ion specific signalling. Journal of Experimental Botany, 60(3), 709-712. doi:10.1093/jxb/erp013 es_ES
dc.description.references Demidchik, V., Shabala, S. N., & Davies, J. M. (2007). Spatial variation in H2O2 response of Arabidopsis thaliana root epidermal Ca2+ flux and plasma membrane Ca2+ channels. The Plant Journal, 49(3), 377-386. doi:10.1111/j.1365-313x.2006.02971.x es_ES
dc.description.references Ozgur, R., Uzilday, B., Sekmen, A. H., & Turkan, I. (2013). Reactive oxygen species regulation and antioxidant defence in halophytes. Functional Plant Biology, 40(9), 832. doi:10.1071/fp12389 es_ES
dc.description.references Ranil, R. H. G., Niran, H. M. L., Plazas, M., Fonseka, R. M., Fonseka, H. H., Vilanova, S., … Prohens, J. (2015). Improving seed germination of the eggplant rootstock Solanum torvum by testing multiple factors using an orthogonal array design. Scientia Horticulturae, 193, 174-181. doi:10.1016/j.scienta.2015.07.030 es_ES
dc.description.references Brenes, M., Solana, A., Boscaiu, M., Fita, A., Vicente, O., Calatayud, Á., … Plazas, M. (2020). Physiological and Biochemical Responses to Salt Stress in Cultivated Eggplant (Solanum melongena L.) and in S. insanum L., a Close Wild Relative. Agronomy, 10(5), 651. doi:10.3390/agronomy10050651 es_ES
dc.description.references Jin, X., Shi, C., Yu, C. Y., Yamada, T., & Sacks, E. J. (2017). Determination of Leaf Water Content by Visible and Near-Infrared Spectrometry and Multivariate Calibration in Miscanthus. Frontiers in Plant Science, 8. doi:10.3389/fpls.2017.00721 es_ES
dc.description.references Weimberg, R. (1987). Solute adjustments in leaves of two species of wheat at two different stages of growth in response to salinity. Physiologia Plantarum, 70(3), 381-388. doi:10.1111/j.1399-3054.1987.tb02832.x es_ES
dc.description.references LICHTENTHALER, H. K., & WELLBURN, A. R. (1983). Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions, 11(5), 591-592. doi:10.1042/bst0110591 es_ES
dc.description.references Bates, L. S., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39(1), 205-207. doi:10.1007/bf00018060 es_ES
dc.description.references DuBois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric Method for Determination of Sugars and Related Substances. Analytical Chemistry, 28(3), 350-356. doi:10.1021/ac60111a017 es_ES
dc.description.references Hodges, D. M., DeLong, J. M., Forney, C. F., & Prange, R. K. (1999). Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta, 207(4), 604-611. doi:10.1007/s004250050524 es_ES
dc.description.references Taulavuori, E., Hellström, E., Taulavuori, K., & Laine, K. (2001). Comparison of two methods used to analyse lipid peroxidation from Vaccinium myrtillus (L.) during snow removal, reacclimation and cold acclimation. Journal of Experimental Botany, 52(365), 2375-2380. doi:10.1093/jexbot/52.365.2375 es_ES
dc.description.references Loreto, F., & Velikova, V. (2001). Isoprene Produced by Leaves Protects the Photosynthetic Apparatus against Ozone Damage, Quenches Ozone Products, and Reduces Lipid Peroxidation of Cellular Membranes. Plant Physiology, 127(4), 1781-1787. doi:10.1104/pp.010497 es_ES
dc.description.references Blainski, A., Lopes, G., & de Mello, J. (2013). Application and Analysis of the Folin Ciocalteu Method for the Determination of the Total Phenolic Content from Limonium Brasiliense L. Molecules, 18(6), 6852-6865. doi:10.3390/molecules18066852 es_ES
dc.description.references Zhishen, J., Mengcheng, T., & Jianming, W. (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry, 64(4), 555-559. doi:10.1016/s0308-8146(98)00102-2 es_ES
dc.description.references Gil, R., Bautista, I., Boscaiu, M., Lidon, A., Wankhade, S., Sanchez, H., … Vicente, O. (2014). Responses of five Mediterranean halophytes to seasonal changes in environmental conditions. AoB PLANTS, 6(0), plu049-plu049. doi:10.1093/aobpla/plu049 es_ES
dc.description.references Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248-254. doi:10.1016/0003-2697(76)90527-3 es_ES
dc.description.references Beyer, W. F., & Fridovich, I. (1987). Assaying for superoxide dismutase activity: Some large consequences of minor changes in conditions. Analytical Biochemistry, 161(2), 559-566. doi:10.1016/0003-2697(87)90489-1 es_ES
dc.description.references Aebi, H. (1984). [13] Catalase in vitro. Oxygen Radicals in Biological Systems, 121-126. doi:10.1016/s0076-6879(84)05016-3 es_ES
dc.description.references Connell, J. P., & Mullet, J. E. (1986). Pea Chloroplast Glutathione Reductase: Purification and Characterization. Plant Physiology, 82(2), 351-356. doi:10.1104/pp.82.2.351 es_ES
dc.description.references Parida, A. K., & Das, A. B. (2005). Salt tolerance and salinity effects on plants: a review. Ecotoxicology and Environmental Safety, 60(3), 324-349. doi:10.1016/j.ecoenv.2004.06.010 es_ES
dc.description.references Hannachi, S., & Van Labeke, M.-C. (2018). Salt stress affects germination, seedling growth and physiological responses differentially in eggplant cultivars (Solanum melongena L.). Scientia Horticulturae, 228, 56-65. doi:10.1016/j.scienta.2017.10.002 es_ES
dc.description.references Al Hassan, M., Morosan, M., López-Gresa, M., Prohens, J., Vicente, O., & Boscaiu, M. (2016). Salinity-Induced Variation in Biochemical Markers Provides Insight into the Mechanisms of Salt Tolerance in Common (Phaseolus vulgaris) and Runner (P. coccineus) Beans. International Journal of Molecular Sciences, 17(9), 1582. doi:10.3390/ijms17091582 es_ES
dc.description.references Ranil, R. H. G., Prohens, J., Aubriot, X., Niran, H. M. L., Plazas, M., Fonseka, R. M., … Knapp, S. (2016). Solanum insanum L. (subgenus Leptostemonum Bitter, Solanaceae), the neglected wild progenitor of eggplant (S. melongena L.): a review of taxonomy, characteristics and uses aimed at its enhancement for improved eggplant breeding. Genetic Resources and Crop Evolution, 64(7), 1707-1722. doi:10.1007/s10722-016-0467-z es_ES
dc.description.references Knapp, S., Vorontsova, M. S., & Prohens, J. (2013). Wild Relatives of the Eggplant (Solanum melongena L.: Solanaceae): New Understanding of Species Names in a Complex Group. PLoS ONE, 8(2), e57039. doi:10.1371/journal.pone.0057039 es_ES
dc.description.references Plazas, M., Nguyen, H. T., González-Orenga, S., Fita, A., Vicente, O., Prohens, J., & Boscaiu, M. (2019). Comparative analysis of the responses to water stress in eggplant (Solanum melongena) cultivars. Plant Physiology and Biochemistry, 143, 72-82. doi:10.1016/j.plaphy.2019.08.031 es_ES
dc.description.references Rajeshwari, V., & Bhuvaneshw, V. (2016). Enhancing Salinity Tolerance in Brinjal Plants by Application of Salicylic Acid. Journal of Plant Sciences, 12(1), 46-51. doi:10.3923/jps.2017.46.51 es_ES
dc.description.references Qiu, N., Lu, Q., & Lu, C. (2003). Photosynthesis, photosystem II efficiency and the xanthophyll cycle in the salt‐adapted halophyte Atriplex centralasiatica. New Phytologist, 159(2), 479-486. doi:10.1046/j.1469-8137.2003.00825.x es_ES
dc.description.references Al Hassan, M., Estrelles, E., Soriano, P., López-Gresa, M. P., Bellés, J. M., Boscaiu, M., & Vicente, O. (2017). Unraveling Salt Tolerance Mechanisms in Halophytes: A Comparative Study on Four Mediterranean Limonium Species with Different Geographic Distribution Patterns. Frontiers in Plant Science, 8. doi:10.3389/fpls.2017.01438 es_ES
dc.description.references Shabala, S. (2000). Ionic and osmotic components of salt stress specifically modulate net ion fluxes from bean leaf mesophyll. Plant, Cell & Environment, 23(8), 825-837. doi:10.1046/j.1365-3040.2000.00606.x es_ES
dc.description.references Mahajan, S., & Tuteja, N. (2005). Cold, salinity and drought stresses: An overview. Archives of Biochemistry and Biophysics, 444(2), 139-158. doi:10.1016/j.abb.2005.10.018 es_ES
dc.description.references Neves-Piestun, B. G., & Bernstein, N. (2005). Salinity-induced changes in the nutritional status of expanding cells may impact leaf growth inhibition in maize. Functional Plant Biology, 32(2), 141. doi:10.1071/fp04113 es_ES
dc.description.references Parvaiz, A., & Satyawati, S. (2008). Salt stress and phyto-biochemical responses of plants – a review. Plant, Soil and Environment, 54(No. 3), 89-99. doi:10.17221/2774-pse es_ES
dc.description.references Almeida, D. M., Oliveira, M. M., & Saibo, N. J. M. (2017). Regulation of Na+ and K+ homeostasis in plants: towards improved salt stress tolerance in crop plants. Genetics and Molecular Biology, 40(1 suppl 1), 326-345. doi:10.1590/1678-4685-gmb-2016-0106 es_ES
dc.description.references Akinci, I. E., Akinci, S., Yilmaz, K., & Dikici, H. (2004). Response of eggplant varieties (Solanum melongena) to salinity in germination and seedling stages. New Zealand Journal of Crop and Horticultural Science, 32(2), 193-200. doi:10.1080/01140671.2004.9514296 es_ES
dc.description.references Amjad, M., Akhtar, J., Murtaza, B., Abbas, G., & Jawad, H. (2016). Differential accumulation of potassium results in varied salt-tolerance response in tomato (Solanum lycopersicum L.) cultivars. Horticulture, Environment, and Biotechnology, 57(3), 248-258. doi:10.1007/s13580-016-0035-7 es_ES
dc.description.references Ashraf, M., & Foolad, M. R. (2007). Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany, 59(2), 206-216. doi:10.1016/j.envexpbot.2005.12.006 es_ES
dc.description.references Arteaga, S., Yabor, L., Díez, M. J., Prohens, J., Boscaiu, M., & Vicente, O. (2020). The Use of Proline in Screening for Tolerance to Drought and Salinity in Common Bean (Phaseolus vulgaris L.) Genotypes. Agronomy, 10(6), 817. doi:10.3390/agronomy10060817 es_ES
dc.description.references Turchetto-Zolet, A. C., Margis-Pinheiro, M., & Margis, R. (2008). The evolution of pyrroline-5-carboxylate synthase in plants: a key enzyme in proline synthesis. Molecular Genetics and Genomics, 281(1), 87-97. doi:10.1007/s00438-008-0396-4 es_ES
dc.description.references Gil, R., Boscaiu, M., Lull, C., Bautista, I., Lidón, A., & Vicente, O. (2013). Are soluble carbohydrates ecologically relevant for salt tolerance in halophytes? Functional Plant Biology, 40(9), 805. doi:10.1071/fp12359 es_ES
dc.description.references Das, K., & Roychoudhury, A. (2014). Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Frontiers in Environmental Science, 2. doi:10.3389/fenvs.2014.00053 es_ES
dc.description.references Del Rio, D., Stewart, A. J., & Pellegrini, N. (2005). A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutrition, Metabolism and Cardiovascular Diseases, 15(4), 316-328. doi:10.1016/j.numecd.2005.05.003 es_ES
dc.description.references Bose, J., Rodrigo-Moreno, A., & Shabala, S. (2013). ROS homeostasis in halophytes in the context of salinity stress tolerance. Journal of Experimental Botany, 65(5), 1241-1257. doi:10.1093/jxb/ert430 es_ES
dc.subject.ods 02.- Poner fin al hambre, conseguir la seguridad alimentaria y una mejor nutrición, y promover la agricultura sostenible es_ES


This item appears in the following Collection(s)

Show simple item record