Mostrar el registro sencillo del ítem
dc.contributor.author | Brenes, Marco | es_ES |
dc.contributor.author | Pérez, Jason | es_ES |
dc.contributor.author | González-Orenga, Sara | es_ES |
dc.contributor.author | Solana, Andrea | es_ES |
dc.contributor.author | Boscaiu, Monica | es_ES |
dc.contributor.author | Prohens Tomás, Jaime | es_ES |
dc.contributor.author | Plazas Ávila, María de la O | es_ES |
dc.contributor.author | Fita, Ana | es_ES |
dc.contributor.author | Vicente, Oscar | es_ES |
dc.date.accessioned | 2021-05-14T03:31:08Z | |
dc.date.available | 2021-05-14T03:31:08Z | |
dc.date.issued | 2020-08 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/166334 | |
dc.description.abstract | [EN] This study investigated the physiological and biochemical responses to salinity stress of Solanum melongena and its wild relative, Solanum torvum, commonly used as eggplant rootstock. Young plants of both species were watered during 25 days with NaCl aqueous solutions at the following four final concentrations: 0 (for the controls), 100, 200, and 300 mM. Plant growth parameters, photosynthetic pigments content, monovalent ion concentrations in roots and leaves, leaf levels of osmolytes (proline and total soluble sugars), oxidative stress markers (MDA and H2O2), non-enzymatic antioxidants (total phenolic compounds and total flavonoids), and enzymatic antioxidant activities superoxide dismutase, catalase, glutathione reductase) were determined after the stress treatments. Salt-induced growth reduction was more significant in S. melongena than in S. torvum, especially at high salt concentrations, indicating a (slightly) higher salt tolerance of the wild species. The mechanisms of tolerance of S. torvum were partly based on the active transport of toxic ions to the leaves at high external salinity and, presumably, a better capacity to store them in the vacuoles, as well as on the accumulation of proline to higher concentrations than in the cultivated eggplant. MDA and H2O2 contents did not vary in response to the salt treatments in S. torvum. However, in S. melongena, MDA content increased by 78% when 300 mM NaCl was applied. No activation of antioxidant mechanisms, accumulation of antioxidant compounds, or increase in the specific activity of antioxidant enzymes in any of the studied species was induced by salinity. The relatively high salt tolerance of S. torvum supports its use as rootstock for eggplant cultivation in salinized soils and as a possible source of salt-tolerance genes for the genetic improvement of cultivated eggplant.This study investigated the physiological and biochemical responses to salinity stress of Solanum melongena and its wild relative, Solanum torvum, commonly used as eggplant rootstock. Young plants of both species were watered during 25 days with NaCl aqueous solutions at the following four final concentrations: 0 (for the controls), 100, 200, and 300 mM. Plant growth parameters, photosynthetic pigments content, monovalent ion concentrations in roots and leaves, leaf levels of osmolytes (proline and total soluble sugars), oxidative stress markers (MDA and H2O2), non-enzymatic antioxidants (total phenolic compounds and total flavonoids), and enzymatic antioxidant activities (superoxide dismutase, catalase, glutathione reductase) were determined after the stress treatments. Salt-induced growth reduction was more significant in S. melongena than in S. torvum, especially at high salt concentrations, indicating a (slightly) higher salt tolerance of the wild species. The mechanisms of tolerance of S. torvum were partly based on the active transport of toxic ions to the leaves at high external salinity and, presumably, a better capacity to store them in the vacuoles, as well as on the accumulation of proline to higher concentrations than in the cultivated eggplant. MDA and H2O2 contents did not vary in response to the salt treatments in S. torvum. However, in S. melongena, MDA content increased by 78% when 300 mM NaCl was applied. No activation of antioxidant mechanisms, accumulation of antioxidant compounds, or increase in the specific activity of antioxidant enzymes in any of the studied species was induced by salinity. The relatively high salt tolerance of S. torvum supports its use as rootstock for eggplant cultivation in salinized soils and as a possible source of salt-tolerance genes for the genetic improvement of cultivated eggplant. | es_ES |
dc.description.sponsorship | This work was undertaken as part of the initiative "Adapting Agriculture to Climate Change: Collecting, Protecting and Preparing CropWild Relatives" which is supported by the Government of Norway and managed by the Global Crop Diversity Trust. For further information, see the project website: http://cwrdiversity.org/.Funding was also received from Ministerio de Ciencia, Innovacion y Universidades, Agencia Estatal de Investigacion and Fondo Europeo de Desarrollo Regional (grant RTI-2018-094592-B-100 from MCIU/AEI/FEDER, UE), European Union's Horizon 2020 Research and Innovation Programme under grant agreement No. 677379 (Linking genetic resources, genomes and phenotypes of Solanaceous crops; G2P-SOL) and Vicerrectorado de Investigacion, Innovacion y Transferencia de la Universitat Politecnica de Valencia (Ayuda a Primeros Proyectos de Investigacion; PAID-06-18). Mariola Plazas is grateful to Generalitat Valenciana and Fondo Social Europeo for a post-doctoral grant (APOSTD/2018/014). Marco Brenes is indebted to the Faculty of Biology of the Costa Rica Institute of Technology for partially supporting his stay in Valencia ("Fondo Solidario y Desarrollo Estudiantil"). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Agriculture | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Salt tolerance | es_ES |
dc.subject | Soil salinity | es_ES |
dc.subject | Vegetative growth | es_ES |
dc.subject | Ion homeostasis | es_ES |
dc.subject | Osmolytes | es_ES |
dc.subject.classification | GENETICA | es_ES |
dc.subject.classification | BIOQUIMICA Y BIOLOGIA MOLECULAR | es_ES |
dc.subject.classification | BOTANICA | es_ES |
dc.title | Comparative Studies on the Physiological and Biochemical Responses to Salt Stress of Eggplant (Solanum melongena) and Its Rootstock S. torvum | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/agriculture10080328 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/677379/EU/Linking genetic resources, genomes and phenotypes of Solanaceous crops/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//PAID-06-18/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//APOSTD%2F2018%2F014/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-094592-B-I00/ES/INTROGRESION DE TOLERANCIA A LA SEQUIA PROCEDENTE DE ESPECIES SILVESTRES PARA LA MEJORA GENETICA DE LA BERENJENA/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ecosistemas Agroforestales - Departament d'Ecosistemes Agroforestals | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana - Institut Universitari de Conservació i Millora de l'Agrodiversitat Valenciana | es_ES |
dc.description.bibliographicCitation | Brenes, M.; Pérez, J.; González-Orenga, S.; Solana, A.; Boscaiu, M.; Prohens Tomás, J.; Plazas Ávila, MDLO.... (2020). Comparative Studies on the Physiological and Biochemical Responses to Salt Stress of Eggplant (Solanum melongena) and Its Rootstock S. torvum. Agriculture. 10(8):1-20. https://doi.org/10.3390/agriculture10080328 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/agriculture10080328 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 20 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 10 | es_ES |
dc.description.issue | 8 | es_ES |
dc.identifier.eissn | 2077-0472 | es_ES |
dc.relation.pasarela | S\418531 | es_ES |
dc.contributor.funder | Crop Trust | es_ES |
dc.contributor.funder | European Social Fund | es_ES |
dc.contributor.funder | Government of Norway | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.contributor.funder | Ministerio de Ciencia, Innovación y Universidades | es_ES |
dc.description.references | Raza, A., Razzaq, A., Mehmood, S., Zou, X., Zhang, X., Lv, Y., & Xu, J. (2019). Impact of Climate Change on Crops Adaptation and Strategies to Tackle Its Outcome: A Review. Plants, 8(2), 34. doi:10.3390/plants8020034 | es_ES |
dc.description.references | Butcher, K., Wick, A. F., DeSutter, T., Chatterjee, A., & Harmon, J. (2016). Soil Salinity: A Threat to Global Food Security. Agronomy Journal, 108(6), 2189-2200. doi:10.2134/agronj2016.06.0368 | es_ES |
dc.description.references | Hanin, M., Ebel, C., Ngom, M., Laplaze, L., & Masmoudi, K. (2016). New Insights on Plant Salt Tolerance Mechanisms and Their Potential Use for Breeding. Frontiers in Plant Science, 7. doi:10.3389/fpls.2016.01787 | es_ES |
dc.description.references | FAOSTAThttp://www.fao.org/faostat/en/#data/QC | es_ES |
dc.description.references | Ünlükara, A., Kurunç, A., Kesmez, G. D., Yurtseven, E., & Suarez, D. L. (2008). Effects of salinity on eggplant (Solanum melongenaL.) growth and evapotranspiration. Irrigation and Drainage, n/a-n/a. doi:10.1002/ird.453 | es_ES |
dc.description.references | Gousset, C., Collonnier, C., Mulya, K., Mariska, I., Rotino, G. L., Besse, P., … Sihachakr, D. (2005). Solanum torvum, as a useful source of resistance against bacterial and fungal diseases for improvement of eggplant (S. melongena L.). Plant Science, 168(2), 319-327. doi:10.1016/j.plantsci.2004.07.034 | es_ES |
dc.description.references | Petran, A., & Hoover, E. (2013). Solanum torvum as a Compatible Rootstock in Interspecific Tomato Grafting. Journal of Horticulture, 01(01). doi:10.4172/2376-0354.1000103 | es_ES |
dc.description.references | Arwiyanto, T., Lwin, K., Maryudani, Y., & Purwantoro, A. (2015). EVALUATION OF LOCAL SOLANUM TORVUM AS A ROOTSTOCK TO CONTROL RALSTONIA SOLANACEARUM IN INDONESIA. Acta Horticulturae, (1086), 101-106. doi:10.17660/actahortic.2015.1086.11 | es_ES |
dc.description.references | Kumar, S., Patel, N., & Saravaiya, S. (2019). Studies on Solanum torvum Swartz rootstock on cultivated eggplant under excess moisture stress. Bangladesh Journal of Botany, 48(2), 297-306. doi:10.3329/bjb.v48i2.47671 | es_ES |
dc.description.references | Munns, R., & Tester, M. (2008). Mechanisms of Salinity Tolerance. Annual Review of Plant Biology, 59(1), 651-681. doi:10.1146/annurev.arplant.59.032607.092911 | es_ES |
dc.description.references | Gupta, B., & Huang, B. (2014). Mechanism of Salinity Tolerance in Plants: Physiological, Biochemical, and Molecular Characterization. International Journal of Genomics, 2014, 1-18. doi:10.1155/2014/701596 | es_ES |
dc.description.references | Al Hassan, M., Chaura, J., Donat-Torres, M. P., Boscaiu, M., & Vicente, O. (2017). Antioxidant responses under salinity and drought in three closely related wild monocots with different ecological optima. AoB PLANTS, 9(2). doi:10.1093/aobpla/plx009 | es_ES |
dc.description.references | Kumari, A., Das, P., Parida, A. K., & Agarwal, P. K. (2015). Proteomics, metabolomics, and ionomics perspectives of salinity tolerance in halophytes. Frontiers in Plant Science, 6. doi:10.3389/fpls.2015.00537 | es_ES |
dc.description.references | Flowers, T. J., & Colmer, T. D. (2008). Salinity tolerance in halophytes*. New Phytologist, 179(4), 945-963. doi:10.1111/j.1469-8137.2008.02531.x | es_ES |
dc.description.references | Szabados, L., & Savouré, A. (2010). Proline: a multifunctional amino acid. Trends in Plant Science, 15(2), 89-97. doi:10.1016/j.tplants.2009.11.009 | es_ES |
dc.description.references | Slama, I., Abdelly, C., Bouchereau, A., Flowers, T., & Savouré, A. (2015). Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress. Annals of Botany, 115(3), 433-447. doi:10.1093/aob/mcu239 | es_ES |
dc.description.references | Apel, K., & Hirt, H. (2004). REACTIVE OXYGEN SPECIES: Metabolism, Oxidative Stress, and Signal Transduction. Annual Review of Plant Biology, 55(1), 373-399. doi:10.1146/annurev.arplant.55.031903.141701 | es_ES |
dc.description.references | Huang, H., Ullah, F., Zhou, D.-X., Yi, M., & Zhao, Y. (2019). Mechanisms of ROS Regulation of Plant Development and Stress Responses. Frontiers in Plant Science, 10. doi:10.3389/fpls.2019.00800 | es_ES |
dc.description.references | Shabala, S. (2009). Salinity and programmed cell death: unravelling mechanisms for ion specific signalling. Journal of Experimental Botany, 60(3), 709-712. doi:10.1093/jxb/erp013 | es_ES |
dc.description.references | Demidchik, V., Shabala, S. N., & Davies, J. M. (2007). Spatial variation in H2O2 response of Arabidopsis thaliana root epidermal Ca2+ flux and plasma membrane Ca2+ channels. The Plant Journal, 49(3), 377-386. doi:10.1111/j.1365-313x.2006.02971.x | es_ES |
dc.description.references | Ozgur, R., Uzilday, B., Sekmen, A. H., & Turkan, I. (2013). Reactive oxygen species regulation and antioxidant defence in halophytes. Functional Plant Biology, 40(9), 832. doi:10.1071/fp12389 | es_ES |
dc.description.references | Ranil, R. H. G., Niran, H. M. L., Plazas, M., Fonseka, R. M., Fonseka, H. H., Vilanova, S., … Prohens, J. (2015). Improving seed germination of the eggplant rootstock Solanum torvum by testing multiple factors using an orthogonal array design. Scientia Horticulturae, 193, 174-181. doi:10.1016/j.scienta.2015.07.030 | es_ES |
dc.description.references | Brenes, M., Solana, A., Boscaiu, M., Fita, A., Vicente, O., Calatayud, Á., … Plazas, M. (2020). Physiological and Biochemical Responses to Salt Stress in Cultivated Eggplant (Solanum melongena L.) and in S. insanum L., a Close Wild Relative. Agronomy, 10(5), 651. doi:10.3390/agronomy10050651 | es_ES |
dc.description.references | Jin, X., Shi, C., Yu, C. Y., Yamada, T., & Sacks, E. J. (2017). Determination of Leaf Water Content by Visible and Near-Infrared Spectrometry and Multivariate Calibration in Miscanthus. Frontiers in Plant Science, 8. doi:10.3389/fpls.2017.00721 | es_ES |
dc.description.references | Weimberg, R. (1987). Solute adjustments in leaves of two species of wheat at two different stages of growth in response to salinity. Physiologia Plantarum, 70(3), 381-388. doi:10.1111/j.1399-3054.1987.tb02832.x | es_ES |
dc.description.references | LICHTENTHALER, H. K., & WELLBURN, A. R. (1983). Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions, 11(5), 591-592. doi:10.1042/bst0110591 | es_ES |
dc.description.references | Bates, L. S., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39(1), 205-207. doi:10.1007/bf00018060 | es_ES |
dc.description.references | DuBois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric Method for Determination of Sugars and Related Substances. Analytical Chemistry, 28(3), 350-356. doi:10.1021/ac60111a017 | es_ES |
dc.description.references | Hodges, D. M., DeLong, J. M., Forney, C. F., & Prange, R. K. (1999). Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta, 207(4), 604-611. doi:10.1007/s004250050524 | es_ES |
dc.description.references | Taulavuori, E., Hellström, E., Taulavuori, K., & Laine, K. (2001). Comparison of two methods used to analyse lipid peroxidation from Vaccinium myrtillus (L.) during snow removal, reacclimation and cold acclimation. Journal of Experimental Botany, 52(365), 2375-2380. doi:10.1093/jexbot/52.365.2375 | es_ES |
dc.description.references | Loreto, F., & Velikova, V. (2001). Isoprene Produced by Leaves Protects the Photosynthetic Apparatus against Ozone Damage, Quenches Ozone Products, and Reduces Lipid Peroxidation of Cellular Membranes. Plant Physiology, 127(4), 1781-1787. doi:10.1104/pp.010497 | es_ES |
dc.description.references | Blainski, A., Lopes, G., & de Mello, J. (2013). Application and Analysis of the Folin Ciocalteu Method for the Determination of the Total Phenolic Content from Limonium Brasiliense L. Molecules, 18(6), 6852-6865. doi:10.3390/molecules18066852 | es_ES |
dc.description.references | Zhishen, J., Mengcheng, T., & Jianming, W. (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry, 64(4), 555-559. doi:10.1016/s0308-8146(98)00102-2 | es_ES |
dc.description.references | Gil, R., Bautista, I., Boscaiu, M., Lidon, A., Wankhade, S., Sanchez, H., … Vicente, O. (2014). Responses of five Mediterranean halophytes to seasonal changes in environmental conditions. AoB PLANTS, 6(0), plu049-plu049. doi:10.1093/aobpla/plu049 | es_ES |
dc.description.references | Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248-254. doi:10.1016/0003-2697(76)90527-3 | es_ES |
dc.description.references | Beyer, W. F., & Fridovich, I. (1987). Assaying for superoxide dismutase activity: Some large consequences of minor changes in conditions. Analytical Biochemistry, 161(2), 559-566. doi:10.1016/0003-2697(87)90489-1 | es_ES |
dc.description.references | Aebi, H. (1984). [13] Catalase in vitro. Oxygen Radicals in Biological Systems, 121-126. doi:10.1016/s0076-6879(84)05016-3 | es_ES |
dc.description.references | Connell, J. P., & Mullet, J. E. (1986). Pea Chloroplast Glutathione Reductase: Purification and Characterization. Plant Physiology, 82(2), 351-356. doi:10.1104/pp.82.2.351 | es_ES |
dc.description.references | Parida, A. K., & Das, A. B. (2005). Salt tolerance and salinity effects on plants: a review. Ecotoxicology and Environmental Safety, 60(3), 324-349. doi:10.1016/j.ecoenv.2004.06.010 | es_ES |
dc.description.references | Hannachi, S., & Van Labeke, M.-C. (2018). Salt stress affects germination, seedling growth and physiological responses differentially in eggplant cultivars (Solanum melongena L.). Scientia Horticulturae, 228, 56-65. doi:10.1016/j.scienta.2017.10.002 | es_ES |
dc.description.references | Al Hassan, M., Morosan, M., López-Gresa, M., Prohens, J., Vicente, O., & Boscaiu, M. (2016). Salinity-Induced Variation in Biochemical Markers Provides Insight into the Mechanisms of Salt Tolerance in Common (Phaseolus vulgaris) and Runner (P. coccineus) Beans. International Journal of Molecular Sciences, 17(9), 1582. doi:10.3390/ijms17091582 | es_ES |
dc.description.references | Ranil, R. H. G., Prohens, J., Aubriot, X., Niran, H. M. L., Plazas, M., Fonseka, R. M., … Knapp, S. (2016). Solanum insanum L. (subgenus Leptostemonum Bitter, Solanaceae), the neglected wild progenitor of eggplant (S. melongena L.): a review of taxonomy, characteristics and uses aimed at its enhancement for improved eggplant breeding. Genetic Resources and Crop Evolution, 64(7), 1707-1722. doi:10.1007/s10722-016-0467-z | es_ES |
dc.description.references | Knapp, S., Vorontsova, M. S., & Prohens, J. (2013). Wild Relatives of the Eggplant (Solanum melongena L.: Solanaceae): New Understanding of Species Names in a Complex Group. PLoS ONE, 8(2), e57039. doi:10.1371/journal.pone.0057039 | es_ES |
dc.description.references | Plazas, M., Nguyen, H. T., González-Orenga, S., Fita, A., Vicente, O., Prohens, J., & Boscaiu, M. (2019). Comparative analysis of the responses to water stress in eggplant (Solanum melongena) cultivars. Plant Physiology and Biochemistry, 143, 72-82. doi:10.1016/j.plaphy.2019.08.031 | es_ES |
dc.description.references | Rajeshwari, V., & Bhuvaneshw, V. (2016). Enhancing Salinity Tolerance in Brinjal Plants by Application of Salicylic Acid. Journal of Plant Sciences, 12(1), 46-51. doi:10.3923/jps.2017.46.51 | es_ES |
dc.description.references | Qiu, N., Lu, Q., & Lu, C. (2003). Photosynthesis, photosystem II efficiency and the xanthophyll cycle in the salt‐adapted halophyte Atriplex centralasiatica. New Phytologist, 159(2), 479-486. doi:10.1046/j.1469-8137.2003.00825.x | es_ES |
dc.description.references | Al Hassan, M., Estrelles, E., Soriano, P., López-Gresa, M. P., Bellés, J. M., Boscaiu, M., & Vicente, O. (2017). Unraveling Salt Tolerance Mechanisms in Halophytes: A Comparative Study on Four Mediterranean Limonium Species with Different Geographic Distribution Patterns. Frontiers in Plant Science, 8. doi:10.3389/fpls.2017.01438 | es_ES |
dc.description.references | Shabala, S. (2000). Ionic and osmotic components of salt stress specifically modulate net ion fluxes from bean leaf mesophyll. Plant, Cell & Environment, 23(8), 825-837. doi:10.1046/j.1365-3040.2000.00606.x | es_ES |
dc.description.references | Mahajan, S., & Tuteja, N. (2005). Cold, salinity and drought stresses: An overview. Archives of Biochemistry and Biophysics, 444(2), 139-158. doi:10.1016/j.abb.2005.10.018 | es_ES |
dc.description.references | Neves-Piestun, B. G., & Bernstein, N. (2005). Salinity-induced changes in the nutritional status of expanding cells may impact leaf growth inhibition in maize. Functional Plant Biology, 32(2), 141. doi:10.1071/fp04113 | es_ES |
dc.description.references | Parvaiz, A., & Satyawati, S. (2008). Salt stress and phyto-biochemical responses of plants – a review. Plant, Soil and Environment, 54(No. 3), 89-99. doi:10.17221/2774-pse | es_ES |
dc.description.references | Almeida, D. M., Oliveira, M. M., & Saibo, N. J. M. (2017). Regulation of Na+ and K+ homeostasis in plants: towards improved salt stress tolerance in crop plants. Genetics and Molecular Biology, 40(1 suppl 1), 326-345. doi:10.1590/1678-4685-gmb-2016-0106 | es_ES |
dc.description.references | Akinci, I. E., Akinci, S., Yilmaz, K., & Dikici, H. (2004). Response of eggplant varieties (Solanum melongena) to salinity in germination and seedling stages. New Zealand Journal of Crop and Horticultural Science, 32(2), 193-200. doi:10.1080/01140671.2004.9514296 | es_ES |
dc.description.references | Amjad, M., Akhtar, J., Murtaza, B., Abbas, G., & Jawad, H. (2016). Differential accumulation of potassium results in varied salt-tolerance response in tomato (Solanum lycopersicum L.) cultivars. Horticulture, Environment, and Biotechnology, 57(3), 248-258. doi:10.1007/s13580-016-0035-7 | es_ES |
dc.description.references | Ashraf, M., & Foolad, M. R. (2007). Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany, 59(2), 206-216. doi:10.1016/j.envexpbot.2005.12.006 | es_ES |
dc.description.references | Arteaga, S., Yabor, L., Díez, M. J., Prohens, J., Boscaiu, M., & Vicente, O. (2020). The Use of Proline in Screening for Tolerance to Drought and Salinity in Common Bean (Phaseolus vulgaris L.) Genotypes. Agronomy, 10(6), 817. doi:10.3390/agronomy10060817 | es_ES |
dc.description.references | Turchetto-Zolet, A. C., Margis-Pinheiro, M., & Margis, R. (2008). The evolution of pyrroline-5-carboxylate synthase in plants: a key enzyme in proline synthesis. Molecular Genetics and Genomics, 281(1), 87-97. doi:10.1007/s00438-008-0396-4 | es_ES |
dc.description.references | Gil, R., Boscaiu, M., Lull, C., Bautista, I., Lidón, A., & Vicente, O. (2013). Are soluble carbohydrates ecologically relevant for salt tolerance in halophytes? Functional Plant Biology, 40(9), 805. doi:10.1071/fp12359 | es_ES |
dc.description.references | Das, K., & Roychoudhury, A. (2014). Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Frontiers in Environmental Science, 2. doi:10.3389/fenvs.2014.00053 | es_ES |
dc.description.references | Del Rio, D., Stewart, A. J., & Pellegrini, N. (2005). A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutrition, Metabolism and Cardiovascular Diseases, 15(4), 316-328. doi:10.1016/j.numecd.2005.05.003 | es_ES |
dc.description.references | Bose, J., Rodrigo-Moreno, A., & Shabala, S. (2013). ROS homeostasis in halophytes in the context of salinity stress tolerance. Journal of Experimental Botany, 65(5), 1241-1257. doi:10.1093/jxb/ert430 | es_ES |
dc.subject.ods | 02.- Poner fin al hambre, conseguir la seguridad alimentaria y una mejor nutrición, y promover la agricultura sostenible | es_ES |