- -

Comparative Studies on the Physiological and Biochemical Responses to Salt Stress of Eggplant (Solanum melongena) and Its Rootstock S. torvum

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Comparative Studies on the Physiological and Biochemical Responses to Salt Stress of Eggplant (Solanum melongena) and Its Rootstock S. torvum

Mostrar el registro completo del ítem

Brenes, M.; Pérez, J.; González-Orenga, S.; Solana, A.; Boscaiu, M.; Prohens Tomás, J.; Plazas Ávila, MDLO.... (2020). Comparative Studies on the Physiological and Biochemical Responses to Salt Stress of Eggplant (Solanum melongena) and Its Rootstock S. torvum. Agriculture. 10(8):1-20. https://doi.org/10.3390/agriculture10080328

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/166334

Ficheros en el ítem

Metadatos del ítem

Título: Comparative Studies on the Physiological and Biochemical Responses to Salt Stress of Eggplant (Solanum melongena) and Its Rootstock S. torvum
Autor: Brenes, Marco Pérez, Jason González-Orenga, Sara Solana, Andrea Boscaiu, Monica Prohens Tomás, Jaime Plazas Ávila, María de la O Fita, Ana Vicente, Oscar
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes
Universitat Politècnica de València. Departamento de Ecosistemas Agroforestales - Departament d'Ecosistemes Agroforestals
Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia
Universitat Politècnica de València. Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana - Institut Universitari de Conservació i Millora de l'Agrodiversitat Valenciana
Fecha difusión:
Resumen:
[EN] This study investigated the physiological and biochemical responses to salinity stress of Solanum melongena and its wild relative, Solanum torvum, commonly used as eggplant rootstock. Young plants of both species were ...[+]
Palabras clave: Salt tolerance , Soil salinity , Vegetative growth , Ion homeostasis , Osmolytes
Derechos de uso: Reconocimiento (by)
Fuente:
Agriculture. (eissn: 2077-0472 )
DOI: 10.3390/agriculture10080328
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/agriculture10080328
Código del Proyecto:
info:eu-repo/grantAgreement/EC/H2020/677379/EU/Linking genetic resources, genomes and phenotypes of Solanaceous crops/
info:eu-repo/grantAgreement/UPV//PAID-06-18/
info:eu-repo/grantAgreement/GVA//APOSTD%2F2018%2F014/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-094592-B-I00/ES/INTROGRESION DE TOLERANCIA A LA SEQUIA PROCEDENTE DE ESPECIES SILVESTRES PARA LA MEJORA GENETICA DE LA BERENJENA/
Agradecimientos:
This work was undertaken as part of the initiative "Adapting Agriculture to Climate Change: Collecting, Protecting and Preparing CropWild Relatives" which is supported by the Government of Norway and managed by the Global ...[+]
Tipo: Artículo

References

Raza, A., Razzaq, A., Mehmood, S., Zou, X., Zhang, X., Lv, Y., & Xu, J. (2019). Impact of Climate Change on Crops Adaptation and Strategies to Tackle Its Outcome: A Review. Plants, 8(2), 34. doi:10.3390/plants8020034

Butcher, K., Wick, A. F., DeSutter, T., Chatterjee, A., & Harmon, J. (2016). Soil Salinity: A Threat to Global Food Security. Agronomy Journal, 108(6), 2189-2200. doi:10.2134/agronj2016.06.0368

Hanin, M., Ebel, C., Ngom, M., Laplaze, L., & Masmoudi, K. (2016). New Insights on Plant Salt Tolerance Mechanisms and Their Potential Use for Breeding. Frontiers in Plant Science, 7. doi:10.3389/fpls.2016.01787 [+]
Raza, A., Razzaq, A., Mehmood, S., Zou, X., Zhang, X., Lv, Y., & Xu, J. (2019). Impact of Climate Change on Crops Adaptation and Strategies to Tackle Its Outcome: A Review. Plants, 8(2), 34. doi:10.3390/plants8020034

Butcher, K., Wick, A. F., DeSutter, T., Chatterjee, A., & Harmon, J. (2016). Soil Salinity: A Threat to Global Food Security. Agronomy Journal, 108(6), 2189-2200. doi:10.2134/agronj2016.06.0368

Hanin, M., Ebel, C., Ngom, M., Laplaze, L., & Masmoudi, K. (2016). New Insights on Plant Salt Tolerance Mechanisms and Their Potential Use for Breeding. Frontiers in Plant Science, 7. doi:10.3389/fpls.2016.01787

FAOSTAThttp://www.fao.org/faostat/en/#data/QC

Ünlükara, A., Kurunç, A., Kesmez, G. D., Yurtseven, E., & Suarez, D. L. (2008). Effects of salinity on eggplant (Solanum melongenaL.) growth and evapotranspiration. Irrigation and Drainage, n/a-n/a. doi:10.1002/ird.453

Gousset, C., Collonnier, C., Mulya, K., Mariska, I., Rotino, G. L., Besse, P., … Sihachakr, D. (2005). Solanum torvum, as a useful source of resistance against bacterial and fungal diseases for improvement of eggplant (S. melongena L.). Plant Science, 168(2), 319-327. doi:10.1016/j.plantsci.2004.07.034

Petran, A., & Hoover, E. (2013). Solanum torvum as a Compatible Rootstock in Interspecific Tomato Grafting. Journal of Horticulture, 01(01). doi:10.4172/2376-0354.1000103

Arwiyanto, T., Lwin, K., Maryudani, Y., & Purwantoro, A. (2015). EVALUATION OF LOCAL SOLANUM TORVUM AS A ROOTSTOCK TO CONTROL RALSTONIA SOLANACEARUM IN INDONESIA. Acta Horticulturae, (1086), 101-106. doi:10.17660/actahortic.2015.1086.11

Kumar, S., Patel, N., & Saravaiya, S. (2019). Studies on Solanum torvum Swartz rootstock on cultivated eggplant under excess moisture stress. Bangladesh Journal of Botany, 48(2), 297-306. doi:10.3329/bjb.v48i2.47671

Munns, R., & Tester, M. (2008). Mechanisms of Salinity Tolerance. Annual Review of Plant Biology, 59(1), 651-681. doi:10.1146/annurev.arplant.59.032607.092911

Gupta, B., & Huang, B. (2014). Mechanism of Salinity Tolerance in Plants: Physiological, Biochemical, and Molecular Characterization. International Journal of Genomics, 2014, 1-18. doi:10.1155/2014/701596

Al Hassan, M., Chaura, J., Donat-Torres, M. P., Boscaiu, M., & Vicente, O. (2017). Antioxidant responses under salinity and drought in three closely related wild monocots with different ecological optima. AoB PLANTS, 9(2). doi:10.1093/aobpla/plx009

Kumari, A., Das, P., Parida, A. K., & Agarwal, P. K. (2015). Proteomics, metabolomics, and ionomics perspectives of salinity tolerance in halophytes. Frontiers in Plant Science, 6. doi:10.3389/fpls.2015.00537

Flowers, T. J., & Colmer, T. D. (2008). Salinity tolerance in halophytes*. New Phytologist, 179(4), 945-963. doi:10.1111/j.1469-8137.2008.02531.x

Szabados, L., & Savouré, A. (2010). Proline: a multifunctional amino acid. Trends in Plant Science, 15(2), 89-97. doi:10.1016/j.tplants.2009.11.009

Slama, I., Abdelly, C., Bouchereau, A., Flowers, T., & Savouré, A. (2015). Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress. Annals of Botany, 115(3), 433-447. doi:10.1093/aob/mcu239

Apel, K., & Hirt, H. (2004). REACTIVE OXYGEN SPECIES: Metabolism, Oxidative Stress, and Signal Transduction. Annual Review of Plant Biology, 55(1), 373-399. doi:10.1146/annurev.arplant.55.031903.141701

Huang, H., Ullah, F., Zhou, D.-X., Yi, M., & Zhao, Y. (2019). Mechanisms of ROS Regulation of Plant Development and Stress Responses. Frontiers in Plant Science, 10. doi:10.3389/fpls.2019.00800

Shabala, S. (2009). Salinity and programmed cell death: unravelling mechanisms for ion specific signalling. Journal of Experimental Botany, 60(3), 709-712. doi:10.1093/jxb/erp013

Demidchik, V., Shabala, S. N., & Davies, J. M. (2007). Spatial variation in H2O2 response of Arabidopsis thaliana root epidermal Ca2+ flux and plasma membrane Ca2+ channels. The Plant Journal, 49(3), 377-386. doi:10.1111/j.1365-313x.2006.02971.x

Ozgur, R., Uzilday, B., Sekmen, A. H., & Turkan, I. (2013). Reactive oxygen species regulation and antioxidant defence in halophytes. Functional Plant Biology, 40(9), 832. doi:10.1071/fp12389

Ranil, R. H. G., Niran, H. M. L., Plazas, M., Fonseka, R. M., Fonseka, H. H., Vilanova, S., … Prohens, J. (2015). Improving seed germination of the eggplant rootstock Solanum torvum by testing multiple factors using an orthogonal array design. Scientia Horticulturae, 193, 174-181. doi:10.1016/j.scienta.2015.07.030

Brenes, M., Solana, A., Boscaiu, M., Fita, A., Vicente, O., Calatayud, Á., … Plazas, M. (2020). Physiological and Biochemical Responses to Salt Stress in Cultivated Eggplant (Solanum melongena L.) and in S. insanum L., a Close Wild Relative. Agronomy, 10(5), 651. doi:10.3390/agronomy10050651

Jin, X., Shi, C., Yu, C. Y., Yamada, T., & Sacks, E. J. (2017). Determination of Leaf Water Content by Visible and Near-Infrared Spectrometry and Multivariate Calibration in Miscanthus. Frontiers in Plant Science, 8. doi:10.3389/fpls.2017.00721

Weimberg, R. (1987). Solute adjustments in leaves of two species of wheat at two different stages of growth in response to salinity. Physiologia Plantarum, 70(3), 381-388. doi:10.1111/j.1399-3054.1987.tb02832.x

LICHTENTHALER, H. K., & WELLBURN, A. R. (1983). Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions, 11(5), 591-592. doi:10.1042/bst0110591

Bates, L. S., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39(1), 205-207. doi:10.1007/bf00018060

DuBois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric Method for Determination of Sugars and Related Substances. Analytical Chemistry, 28(3), 350-356. doi:10.1021/ac60111a017

Hodges, D. M., DeLong, J. M., Forney, C. F., & Prange, R. K. (1999). Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta, 207(4), 604-611. doi:10.1007/s004250050524

Taulavuori, E., Hellström, E., Taulavuori, K., & Laine, K. (2001). Comparison of two methods used to analyse lipid peroxidation from Vaccinium myrtillus (L.) during snow removal, reacclimation and cold acclimation. Journal of Experimental Botany, 52(365), 2375-2380. doi:10.1093/jexbot/52.365.2375

Loreto, F., & Velikova, V. (2001). Isoprene Produced by Leaves Protects the Photosynthetic Apparatus against Ozone Damage, Quenches Ozone Products, and Reduces Lipid Peroxidation of Cellular Membranes. Plant Physiology, 127(4), 1781-1787. doi:10.1104/pp.010497

Blainski, A., Lopes, G., & de Mello, J. (2013). Application and Analysis of the Folin Ciocalteu Method for the Determination of the Total Phenolic Content from Limonium Brasiliense L. Molecules, 18(6), 6852-6865. doi:10.3390/molecules18066852

Zhishen, J., Mengcheng, T., & Jianming, W. (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry, 64(4), 555-559. doi:10.1016/s0308-8146(98)00102-2

Gil, R., Bautista, I., Boscaiu, M., Lidon, A., Wankhade, S., Sanchez, H., … Vicente, O. (2014). Responses of five Mediterranean halophytes to seasonal changes in environmental conditions. AoB PLANTS, 6(0), plu049-plu049. doi:10.1093/aobpla/plu049

Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248-254. doi:10.1016/0003-2697(76)90527-3

Beyer, W. F., & Fridovich, I. (1987). Assaying for superoxide dismutase activity: Some large consequences of minor changes in conditions. Analytical Biochemistry, 161(2), 559-566. doi:10.1016/0003-2697(87)90489-1

Aebi, H. (1984). [13] Catalase in vitro. Oxygen Radicals in Biological Systems, 121-126. doi:10.1016/s0076-6879(84)05016-3

Connell, J. P., & Mullet, J. E. (1986). Pea Chloroplast Glutathione Reductase: Purification and Characterization. Plant Physiology, 82(2), 351-356. doi:10.1104/pp.82.2.351

Parida, A. K., & Das, A. B. (2005). Salt tolerance and salinity effects on plants: a review. Ecotoxicology and Environmental Safety, 60(3), 324-349. doi:10.1016/j.ecoenv.2004.06.010

Hannachi, S., & Van Labeke, M.-C. (2018). Salt stress affects germination, seedling growth and physiological responses differentially in eggplant cultivars (Solanum melongena L.). Scientia Horticulturae, 228, 56-65. doi:10.1016/j.scienta.2017.10.002

Al Hassan, M., Morosan, M., López-Gresa, M., Prohens, J., Vicente, O., & Boscaiu, M. (2016). Salinity-Induced Variation in Biochemical Markers Provides Insight into the Mechanisms of Salt Tolerance in Common (Phaseolus vulgaris) and Runner (P. coccineus) Beans. International Journal of Molecular Sciences, 17(9), 1582. doi:10.3390/ijms17091582

Ranil, R. H. G., Prohens, J., Aubriot, X., Niran, H. M. L., Plazas, M., Fonseka, R. M., … Knapp, S. (2016). Solanum insanum L. (subgenus Leptostemonum Bitter, Solanaceae), the neglected wild progenitor of eggplant (S. melongena L.): a review of taxonomy, characteristics and uses aimed at its enhancement for improved eggplant breeding. Genetic Resources and Crop Evolution, 64(7), 1707-1722. doi:10.1007/s10722-016-0467-z

Knapp, S., Vorontsova, M. S., & Prohens, J. (2013). Wild Relatives of the Eggplant (Solanum melongena L.: Solanaceae): New Understanding of Species Names in a Complex Group. PLoS ONE, 8(2), e57039. doi:10.1371/journal.pone.0057039

Plazas, M., Nguyen, H. T., González-Orenga, S., Fita, A., Vicente, O., Prohens, J., & Boscaiu, M. (2019). Comparative analysis of the responses to water stress in eggplant (Solanum melongena) cultivars. Plant Physiology and Biochemistry, 143, 72-82. doi:10.1016/j.plaphy.2019.08.031

Rajeshwari, V., & Bhuvaneshw, V. (2016). Enhancing Salinity Tolerance in Brinjal Plants by Application of Salicylic Acid. Journal of Plant Sciences, 12(1), 46-51. doi:10.3923/jps.2017.46.51

Qiu, N., Lu, Q., & Lu, C. (2003). Photosynthesis, photosystem II efficiency and the xanthophyll cycle in the salt‐adapted halophyte Atriplex centralasiatica. New Phytologist, 159(2), 479-486. doi:10.1046/j.1469-8137.2003.00825.x

Al Hassan, M., Estrelles, E., Soriano, P., López-Gresa, M. P., Bellés, J. M., Boscaiu, M., & Vicente, O. (2017). Unraveling Salt Tolerance Mechanisms in Halophytes: A Comparative Study on Four Mediterranean Limonium Species with Different Geographic Distribution Patterns. Frontiers in Plant Science, 8. doi:10.3389/fpls.2017.01438

Shabala, S. (2000). Ionic and osmotic components of salt stress specifically modulate net ion fluxes from bean leaf mesophyll. Plant, Cell & Environment, 23(8), 825-837. doi:10.1046/j.1365-3040.2000.00606.x

Mahajan, S., & Tuteja, N. (2005). Cold, salinity and drought stresses: An overview. Archives of Biochemistry and Biophysics, 444(2), 139-158. doi:10.1016/j.abb.2005.10.018

Neves-Piestun, B. G., & Bernstein, N. (2005). Salinity-induced changes in the nutritional status of expanding cells may impact leaf growth inhibition in maize. Functional Plant Biology, 32(2), 141. doi:10.1071/fp04113

Parvaiz, A., & Satyawati, S. (2008). Salt stress and phyto-biochemical responses of plants – a review. Plant, Soil and Environment, 54(No. 3), 89-99. doi:10.17221/2774-pse

Almeida, D. M., Oliveira, M. M., & Saibo, N. J. M. (2017). Regulation of Na+ and K+ homeostasis in plants: towards improved salt stress tolerance in crop plants. Genetics and Molecular Biology, 40(1 suppl 1), 326-345. doi:10.1590/1678-4685-gmb-2016-0106

Akinci, I. E., Akinci, S., Yilmaz, K., & Dikici, H. (2004). Response of eggplant varieties (Solanum melongena) to salinity in germination and seedling stages. New Zealand Journal of Crop and Horticultural Science, 32(2), 193-200. doi:10.1080/01140671.2004.9514296

Amjad, M., Akhtar, J., Murtaza, B., Abbas, G., & Jawad, H. (2016). Differential accumulation of potassium results in varied salt-tolerance response in tomato (Solanum lycopersicum L.) cultivars. Horticulture, Environment, and Biotechnology, 57(3), 248-258. doi:10.1007/s13580-016-0035-7

Ashraf, M., & Foolad, M. R. (2007). Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany, 59(2), 206-216. doi:10.1016/j.envexpbot.2005.12.006

Arteaga, S., Yabor, L., Díez, M. J., Prohens, J., Boscaiu, M., & Vicente, O. (2020). The Use of Proline in Screening for Tolerance to Drought and Salinity in Common Bean (Phaseolus vulgaris L.) Genotypes. Agronomy, 10(6), 817. doi:10.3390/agronomy10060817

Turchetto-Zolet, A. C., Margis-Pinheiro, M., & Margis, R. (2008). The evolution of pyrroline-5-carboxylate synthase in plants: a key enzyme in proline synthesis. Molecular Genetics and Genomics, 281(1), 87-97. doi:10.1007/s00438-008-0396-4

Gil, R., Boscaiu, M., Lull, C., Bautista, I., Lidón, A., & Vicente, O. (2013). Are soluble carbohydrates ecologically relevant for salt tolerance in halophytes? Functional Plant Biology, 40(9), 805. doi:10.1071/fp12359

Das, K., & Roychoudhury, A. (2014). Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Frontiers in Environmental Science, 2. doi:10.3389/fenvs.2014.00053

Del Rio, D., Stewart, A. J., & Pellegrini, N. (2005). A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutrition, Metabolism and Cardiovascular Diseases, 15(4), 316-328. doi:10.1016/j.numecd.2005.05.003

Bose, J., Rodrigo-Moreno, A., & Shabala, S. (2013). ROS homeostasis in halophytes in the context of salinity stress tolerance. Journal of Experimental Botany, 65(5), 1241-1257. doi:10.1093/jxb/ert430

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem