- -

Borates or phosphates? That is the question

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Borates or phosphates? That is the question

Show full item record

Contreras-García, J.; Izquierdo-Ruiz, F.; Marqués, M.; Manjón, F. (2020). Borates or phosphates? That is the question. Acta Crystallographica Section A: Foundations and Advances. 76:197-205. https://doi.org/10.1107/S2053273319016826

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/166337

Files in this item

Item Metadata

Title: Borates or phosphates? That is the question
Author: Contreras-García, J. Izquierdo-Ruiz, F. Marqués, M. Manjón, Francisco-Javier
UPV Unit: Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Issued date:
Abstract:
[EN] Chemical nomenclature is perceived to be a closed topic. However, this work shows that the identification of polyanionic groups is still ambiguous and so is the nomenclature for some ternary compounds. Two examples, ...[+]
Subjects: Borates , Topology , Electron density , Nomenclature
Copyrigths: Reserva de todos los derechos
Source:
Acta Crystallographica Section A: Foundations and Advances. (eissn: 2053-2733 )
DOI: 10.1107/S2053273319016826
Publisher:
International Union of Crystallography
Publisher version: https://doi.org/10.1107/S2053273319016826
Project ID:
info:eu-repo/grantAgreement/UKRI//EP%2FP022561%2F1/GB/Support for the UKCP consortium/
...[+]
info:eu-repo/grantAgreement/UKRI//EP%2FP022561%2F1/GB/Support for the UKCP consortium/
info:eu-repo/grantAgreement/ANR//ANR-11-LABX-0037/FR/LABEX pour la modélisation et la simulation scientifiques en recherche/CALSIMLAB/
info:eu-repo/grantAgreement/ANR//ANR-11-IDEX-0004/FR/Sorbonne Universités à Paris pour l'Enseignement et la Recherche/SUPER/
info:eu-repo/grantAgreement/MINECO//MAT2015-71070-REDC/ES/MATERIA A ALTA PRESION. MALTA-CONSOLIDER TEAM/
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2018%2F123/ES/Materiales avanzados para el uso eficiente de la energia (EFIMAT)/
info:eu-repo/grantAgreement/MINECO//MAT2016-75586-C4-2-P/ES/COMPUESTOS ABO3 Y A2X3 EN CONDICIONES EXTREMAS DE PRESION Y TEMPERATURA/
info:eu-repo/grantAgreement/AEI//RED2018-102612-T/ES/MALTA‐CONSOLIDER TEAM/
[-]
Thanks:
This research was partially supported by Spanish MINECO (grant Nos. MAT2015-71070-REDC and MAT2016-75586-C4-2-P, and MALTA Consolider Team RED2018-102612-T) and Generalitat Valenciana (grant No. PROMETEO/2018/123-EFIMAT). ...[+]
Type: Artículo

References

Abraham, R. H. & Marsden, J. E. (1994). Foundations of Mechanics. Reading: Addison Wesley.

Alinger, N. L., Clark, T., Gasteiger, J., Kollman, P. A., Schaefer, H. F. III, Schreiner, P. R. & Schleyer, von R. (1998). Encyclopedia of Computational Chemistry, edited by R. F. W. Bader. Chichester: Wiley.

Bader, R. F. W. (1990). Atoms in Molecules, a Quantum Theory. Oxford: Clarendon. [+]
Abraham, R. H. & Marsden, J. E. (1994). Foundations of Mechanics. Reading: Addison Wesley.

Alinger, N. L., Clark, T., Gasteiger, J., Kollman, P. A., Schaefer, H. F. III, Schreiner, P. R. & Schleyer, von R. (1998). Encyclopedia of Computational Chemistry, edited by R. F. W. Bader. Chichester: Wiley.

Bader, R. F. W. (1990). Atoms in Molecules, a Quantum Theory. Oxford: Clarendon.

Bader, R. F. W. (1994). Principle of stationary action and the definition of a proper open system. Physical Review B, 49(19), 13348-13356. doi:10.1103/physrevb.49.13348

Bastide, J. P. (1987). Systématique simplifiée des composés ABX4 (X = O2−, F−) et evolution possible de leurs structures cristallines sous pression. Journal of Solid State Chemistry, 71(1), 115-120. doi:10.1016/0022-4596(87)90149-6

Bayer, G. (1972). Thermal expansion of ABO4-compounds with zircon- and scheelite structures. Journal of the Less Common Metals, 26(2), 255-262. doi:10.1016/0022-5088(72)90045-8

Blasse, G., & Van Den Heuvel, G. P. M. (1973). Some optical properties of tantalum borate (tabo4), a compound with unusual coordinations. Physica Status Solidi (a), 19(1), 111-117. doi:10.1002/pssa.2210190109

Boyd, R. J. & Matta, C. F. (2007). Editors. The Quantum Theory of Atoms in Molecules. From Solid State to DNA and Drug Design. Weinheim: Wiley-VCH.

Brill, R., & Debretteville, A. P. (1955). On the chemical bond type in AlPO4. Acta Crystallographica, 8(9), 567-570. doi:10.1107/s0365110x5500176x

Dachille, F., & Glasser, L. S. D. (1959). High pressure forms of BPO4 and BAsO4; quartz analogues. Acta Crystallographica, 12(10), 820-821. doi:10.1107/s0365110x59002365

Dachille, F., & Roy, R. (1959). High-pressure region of the silica isotypes. Zeitschrift für Kristallographie, 111(1-6), 451-461. doi:10.1524/zkri.1959.111.1-6.451

Demartin, F., Diella, V., Gramaccioli, C. M., & Pezzotta, F. (2001). Schiavinatoite, (Nb,Ta)BO4, the Nb analogue of behierite. European Journal of Mineralogy, 13(1), 159-165. doi:10.1127/0935-1221/01/0013-0159

Depero, L. E., & Sangaletti, L. (1997). Cation Sublattice and Coordination Polyhedra inABO4Type of Structures. Journal of Solid State Chemistry, 129(1), 82-91. doi:10.1006/jssc.1996.7234

Errandonea, D., & Manjón, F. J. (2008). Pressure effects on the structural and electronic properties of ABX4 scintillating crystals. Progress in Materials Science, 53(4), 711-773. doi:10.1016/j.pmatsci.2008.02.001

Fukunaga, O., & Yamaoka, S. (1979). Phase transformations in ABO 4 type compounds under high pressure. Physics and Chemistry of Minerals, 5(2), 167-177. doi:10.1007/bf00307551

Gázquez, J. L., & Ortiz, E. (1984). Electronegativities and hardnesses of open shell atoms. The Journal of Chemical Physics, 81(6), 2741-2748. doi:10.1063/1.447946

Geerlings, P., De Proft, F., & Langenaeker, W. (2003). Conceptual Density Functional Theory. Chemical Reviews, 103(5), 1793-1874. doi:10.1021/cr990029p

Genoni, A., Bučinský, L., Claiser, N., Contreras‐García, J., Dittrich, B., Dominiak, P. M., … Grabowsky, S. (2018). Quantum Crystallography: Current Developments and Future Perspectives. Chemistry – A European Journal, 24(43), 10881-10905. doi:10.1002/chem.201705952

Gibbs, G. V., Cox, D. F., Boisen, M. B., Downs, R. T., & Ross, N. L. (2003). The electron localization function: a tool for locating favorable proton docking sites in the silica polymorphs. Physics and Chemistry of Minerals, 30(5), 305-316. doi:10.1007/s00269-003-0318-2

Gramaccioli, C. M. (2000). Un nuovo minerale: la schiavinatoite. Rendiconti Lincei, 11(4), 197-199. doi:10.1007/bf02904665

Haines, J., Chateau, C., Léger, J. M., Bogicevic, C., Hull, S., Klug, D. D., & Tse, J. S. (2003). Collapsing Cristobalitelike Structures in Silica Analogues at High Pressure. Physical Review Letters, 91(1). doi:10.1103/physrevlett.91.015503

Hazen, R. M., & Finger, L. W. (1979). Bulk modulus-volume relationship for cation-anion polyhedra. Journal of Geophysical Research: Solid Earth, 84(B12), 6723-6728. doi:10.1029/jb084ib12p06723

Hazen, R. M., Finger, L. W., & Mariathasan, J. W. E. (1985). High-pressure crystal chemistry of scheelite-type tungstates and molybdates. Journal of Physics and Chemistry of Solids, 46(2), 253-263. doi:10.1016/0022-3697(85)90039-3

IUPAC (1970). Nomenclature of Inorganic Solids. Definitive Rules. 3rd ed. London: International Union of Pure and Applied Chemistry.

Kniep, R., Gözel, G., Eisenmann, B., Röhr, C., Asbrand, M., & Kizilyalli, M. (1994). Borophosphates—A Neglected Class of Compounds: Crystal Structures of MII[BPO5](MII Ca, Sr) and Ba3[BP3O12]. Angewandte Chemie International Edition in English, 33(7), 749-751. doi:10.1002/anie.199407491

Kresse, G., & Joubert, D. (1999). From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B, 59(3), 1758-1775. doi:10.1103/physrevb.59.1758

Lashin, V. E., Khritokhin, N. A., & Andreev, O. V. (2012). Structure maps of ABX4 inorganic compounds. Russian Journal of Inorganic Chemistry, 57(12), 1584-1587. doi:10.1134/s0036023612120133

Léger, J. M., Haines, J., Chateau, C., Bocquillon, G., Schmidt, M. W., Hull, S., … Marchand, R. (2001). Phosphorus oxynitride PON, a silica analogue: structure and compression of the cristobalite-like phase; P  - T phase diagram. Physics and Chemistry of Minerals, 28(6), 388-398. doi:10.1007/s002690100161

Liu, L. (1982). Phase transformations in MSiO4 compounds at high pressures and their geophysical implications. Earth and Planetary Science Letters, 57(1), 110-116. doi:10.1016/0012-821x(82)90177-7

Martín Pendás, A., Costales, A., Blanco, M. A., Recio, J. M., & Luaña, V. (2000). Local compressibilities in crystals. Physical Review B, 62(21), 13970-13978. doi:10.1103/physrevb.62.13970

Monkhorst, H. J., & Pack, J. D. (1976). Special points for Brillouin-zone integrations. Physical Review B, 13(12), 5188-5192. doi:10.1103/physrevb.13.5188

Mori-Sánchez, P., Pendás, A. M., & Luaña, V. (2001). Polarity inversion in the electron density of BP crystal. Physical Review B, 63(12). doi:10.1103/physrevb.63.125103

Muller, O., & Roy, R. (1973). Phase transitions among the ABX4compounds*,1. Zeitschrift für Kristallographie, 138(138), 237-253. doi:10.1524/zkri.1973.138.138.237

O’Keeffe, M., & Hyde, B. G. (1976). Cristobalites and topologically-related structures. Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, 32(11), 2923-2936. doi:10.1107/s0567740876009308

Otero-de-la-Roza, A., Blanco, M. A., Pendás, A. M., & Luaña, V. (2009). Critic: a new program for the topological analysis of solid-state electron densities. Computer Physics Communications, 180(1), 157-166. doi:10.1016/j.cpc.2008.07.018

Otero-de-la-Roza, A., Johnson, E. R., & Contreras-García, J. (2012). Revealing non-covalent interactions in solids: NCI plots revisited. Physical Chemistry Chemical Physics, 14(35), 12165. doi:10.1039/c2cp41395g

Pauling, L. (1929). THE PRINCIPLES DETERMINING THE STRUCTURE OF COMPLEX IONIC CRYSTALS. Journal of the American Chemical Society, 51(4), 1010-1026. doi:10.1021/ja01379a006

Pauling, L. (1960). The Nature of the Chemical Bond and the Structure of Molecules and Crystals: An Introduction to Modern Structural Chemistry, 3rd ed., pp. 543-562. Ithaca: Cornell University Press.

Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized Gradient Approximation Made Simple. Physical Review Letters, 77(18), 3865-3868. doi:10.1103/physrevlett.77.3865

Rahm, M., Zeng, T., & Hoffmann, R. (2018). Electronegativity Seen as the Ground-State Average Valence Electron Binding Energy. Journal of the American Chemical Society, 141(1), 342-351. doi:10.1021/jacs.8b10246

Range, K.-J., Wildenauer, M., & Heyns, A. M. (1988). Extremely Short Non-Bonding Oxygen?Oxygen Distances: The Crystal Structures of NbBO4, NaNb3O8, and NaTa3O8. Angewandte Chemie International Edition in English, 27(7), 969-971. doi:10.1002/anie.198809691

Recio, J. M., Franco, R., Martín Pendás, A., Blanco, M. A., Pueyo, L., & Pandey, R. (2001). Theoretical explanation of the uniform compressibility behavior observed in oxide spinels. Physical Review B, 63(18). doi:10.1103/physrevb.63.184101

Schulze, G. E. R. (1933). Die Kristallstruktur von BPO4 und BAsO4. Die Naturwissenschaften, 21(30), 562-562. doi:10.1007/bf01503856

Scott, H. P., Williams, Q., & Knittle, E. (2001). Ultralow Compressibility Silicate without Highly Coordinated Silicon. Physical Review Letters, 88(1). doi:10.1103/physrevlett.88.015506

Shannon, R. D. (1976). Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A, 32(5), 751-767. doi:10.1107/s0567739476001551

Stubican, V. S., & Roy, R. (1963). High-pressure scheelite-structure polymorphs of rare-earth vanadates and arsenates. Zeitschrift für Kristallographie, 119(1-2), 90-97. doi:10.1524/zkri.1963.119.1-2.90

Vinet, P., Ferrante, J., Smith, J. R. & Rose, J. H. (1986). J. Phys. C: Solid State Phys. L, 19, 467.

Vorres, K. S. (1962). Correlating ABO4 compound structures. Journal of Chemical Education, 39(11), 566. doi:10.1021/ed039p566

Yang, W., Parr, R. G., & Uytterhoeven, L. (1987). New relation between hardness and compressibility of minerals. Physics and Chemistry of Minerals, 15(2), 191-195. doi:10.1007/bf00308783

Zhang, J., Song, L., Sist, M., Tolborg, K., & Iversen, B. B. (2018). Chemical bonding origin of the unexpected isotropic physical properties in thermoelectric Mg3Sb2 and related materials. Nature Communications, 9(1). doi:10.1038/s41467-018-06980-x

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record