Mostrar el registro sencillo del ítem
dc.contributor.author | Contreras-García, J. | es_ES |
dc.contributor.author | Izquierdo-Ruiz, F. | es_ES |
dc.contributor.author | Marqués, M. | es_ES |
dc.contributor.author | Manjón, Francisco-Javier | es_ES |
dc.date.accessioned | 2021-05-14T03:31:27Z | |
dc.date.available | 2021-05-14T03:31:27Z | |
dc.date.issued | 2020-03 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/166337 | |
dc.description.abstract | [EN] Chemical nomenclature is perceived to be a closed topic. However, this work shows that the identification of polyanionic groups is still ambiguous and so is the nomenclature for some ternary compounds. Two examples, boron phosphate (BPO4) and boron arsenate (BAsO4), which were assigned to the large phosphate and arsenate families, respectively, nearly a century ago, are explored. The analyses show that these two compounds should be renamed phosphorus borate (PBO4) and arsenic borate (AsBO4). Beyond epistemology, this has pleasing consequences at several levels for the predictive character of chemistry. It paves the way for future work on the possible syntheses of SbBO4 and BiBO4, and it also renders previous structure field maps completely predictive, allowing us to foresee the structure and phase transitions of NbBO4 and TaBO4. Overall, this work demonstrates that quantum mechanics calculations can contribute to the improvement of current chemical nomenclature. Such revisitation is necessary to classify compounds and understand their properties, leading to the main final aim of a chemist: predicting new compounds, their structures and their transformations. | es_ES |
dc.description.sponsorship | This research was partially supported by Spanish MINECO (grant Nos. MAT2015-71070-REDC and MAT2016-75586-C4-2-P, and MALTA Consolider Team RED2018-102612-T) and Generalitat Valenciana (grant No. PROMETEO/2018/123-EFIMAT). J. Contreras-Garci ' a thanks CALSIMLAB (public grant No. ANR-11-LABX-0037-01), overseen by the French National Research Agency (ANR) as part of the Investissements d'Avenir program (grant No. ANR-11-IDEX-0004-02). M. Marque ' s acknowledges support from the ERC grant `Hecate' and computational resources provided by the UKCP consortium under EPSRC grant EP/P022561/1. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | International Union of Crystallography | es_ES |
dc.relation.ispartof | Acta Crystallographica Section A: Foundations and Advances | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Borates | es_ES |
dc.subject | Topology | es_ES |
dc.subject | Electron density | es_ES |
dc.subject | Nomenclature | es_ES |
dc.subject.classification | FISICA APLICADA | es_ES |
dc.title | Borates or phosphates? That is the question | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1107/S2053273319016826 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UKRI//EP%2FP022561%2F1/GB/Support for the UKCP consortium/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/ANR//ANR-11-LABX-0037/FR/LABEX pour la modélisation et la simulation scientifiques en recherche/CALSIMLAB/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/ANR//ANR-11-IDEX-0004/FR/Sorbonne Universités à Paris pour l'Enseignement et la Recherche/SUPER/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MAT2015-71070-REDC/ES/MATERIA A ALTA PRESION. MALTA-CONSOLIDER TEAM/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2018%2F123/ES/Materiales avanzados para el uso eficiente de la energia (EFIMAT)/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MAT2016-75586-C4-2-P/ES/COMPUESTOS ABO3 Y A2X3 EN CONDICIONES EXTREMAS DE PRESION Y TEMPERATURA/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI//RED2018-102612-T/ES/MALTA‐CONSOLIDER TEAM/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada | es_ES |
dc.description.bibliographicCitation | Contreras-García, J.; Izquierdo-Ruiz, F.; Marqués, M.; Manjón, F. (2020). Borates or phosphates? That is the question. Acta Crystallographica Section A: Foundations and Advances. 76:197-205. https://doi.org/10.1107/S2053273319016826 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1107/S2053273319016826 | es_ES |
dc.description.upvformatpinicio | 197 | es_ES |
dc.description.upvformatpfin | 205 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 76 | es_ES |
dc.identifier.eissn | 2053-2733 | es_ES |
dc.identifier.pmid | 32124857 | es_ES |
dc.relation.pasarela | S\420860 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | UK Research and Innovation | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Agence Nationale de la Recherche, Francia | es_ES |
dc.contributor.funder | Engineering and Physical Sciences Research Council, Reino Unido | es_ES |
dc.description.references | Abraham, R. H. & Marsden, J. E. (1994). Foundations of Mechanics. Reading: Addison Wesley. | es_ES |
dc.description.references | Alinger, N. L., Clark, T., Gasteiger, J., Kollman, P. A., Schaefer, H. F. III, Schreiner, P. R. & Schleyer, von R. (1998). Encyclopedia of Computational Chemistry, edited by R. F. W. Bader. Chichester: Wiley. | es_ES |
dc.description.references | Bader, R. F. W. (1990). Atoms in Molecules, a Quantum Theory. Oxford: Clarendon. | es_ES |
dc.description.references | Bader, R. F. W. (1994). Principle of stationary action and the definition of a proper open system. Physical Review B, 49(19), 13348-13356. doi:10.1103/physrevb.49.13348 | es_ES |
dc.description.references | Bastide, J. P. (1987). Systématique simplifiée des composés ABX4 (X = O2−, F−) et evolution possible de leurs structures cristallines sous pression. Journal of Solid State Chemistry, 71(1), 115-120. doi:10.1016/0022-4596(87)90149-6 | es_ES |
dc.description.references | Bayer, G. (1972). Thermal expansion of ABO4-compounds with zircon- and scheelite structures. Journal of the Less Common Metals, 26(2), 255-262. doi:10.1016/0022-5088(72)90045-8 | es_ES |
dc.description.references | Blasse, G., & Van Den Heuvel, G. P. M. (1973). Some optical properties of tantalum borate (tabo4), a compound with unusual coordinations. Physica Status Solidi (a), 19(1), 111-117. doi:10.1002/pssa.2210190109 | es_ES |
dc.description.references | Boyd, R. J. & Matta, C. F. (2007). Editors. The Quantum Theory of Atoms in Molecules. From Solid State to DNA and Drug Design. Weinheim: Wiley-VCH. | es_ES |
dc.description.references | Brill, R., & Debretteville, A. P. (1955). On the chemical bond type in AlPO4. Acta Crystallographica, 8(9), 567-570. doi:10.1107/s0365110x5500176x | es_ES |
dc.description.references | Dachille, F., & Glasser, L. S. D. (1959). High pressure forms of BPO4 and BAsO4; quartz analogues. Acta Crystallographica, 12(10), 820-821. doi:10.1107/s0365110x59002365 | es_ES |
dc.description.references | Dachille, F., & Roy, R. (1959). High-pressure region of the silica isotypes. Zeitschrift für Kristallographie, 111(1-6), 451-461. doi:10.1524/zkri.1959.111.1-6.451 | es_ES |
dc.description.references | Demartin, F., Diella, V., Gramaccioli, C. M., & Pezzotta, F. (2001). Schiavinatoite, (Nb,Ta)BO4, the Nb analogue of behierite. European Journal of Mineralogy, 13(1), 159-165. doi:10.1127/0935-1221/01/0013-0159 | es_ES |
dc.description.references | Depero, L. E., & Sangaletti, L. (1997). Cation Sublattice and Coordination Polyhedra inABO4Type of Structures. Journal of Solid State Chemistry, 129(1), 82-91. doi:10.1006/jssc.1996.7234 | es_ES |
dc.description.references | Errandonea, D., & Manjón, F. J. (2008). Pressure effects on the structural and electronic properties of ABX4 scintillating crystals. Progress in Materials Science, 53(4), 711-773. doi:10.1016/j.pmatsci.2008.02.001 | es_ES |
dc.description.references | Fukunaga, O., & Yamaoka, S. (1979). Phase transformations in ABO 4 type compounds under high pressure. Physics and Chemistry of Minerals, 5(2), 167-177. doi:10.1007/bf00307551 | es_ES |
dc.description.references | Gázquez, J. L., & Ortiz, E. (1984). Electronegativities and hardnesses of open shell atoms. The Journal of Chemical Physics, 81(6), 2741-2748. doi:10.1063/1.447946 | es_ES |
dc.description.references | Geerlings, P., De Proft, F., & Langenaeker, W. (2003). Conceptual Density Functional Theory. Chemical Reviews, 103(5), 1793-1874. doi:10.1021/cr990029p | es_ES |
dc.description.references | Genoni, A., Bučinský, L., Claiser, N., Contreras‐García, J., Dittrich, B., Dominiak, P. M., … Grabowsky, S. (2018). Quantum Crystallography: Current Developments and Future Perspectives. Chemistry – A European Journal, 24(43), 10881-10905. doi:10.1002/chem.201705952 | es_ES |
dc.description.references | Gibbs, G. V., Cox, D. F., Boisen, M. B., Downs, R. T., & Ross, N. L. (2003). The electron localization function: a tool for locating favorable proton docking sites in the silica polymorphs. Physics and Chemistry of Minerals, 30(5), 305-316. doi:10.1007/s00269-003-0318-2 | es_ES |
dc.description.references | Gramaccioli, C. M. (2000). Un nuovo minerale: la schiavinatoite. Rendiconti Lincei, 11(4), 197-199. doi:10.1007/bf02904665 | es_ES |
dc.description.references | Haines, J., Chateau, C., Léger, J. M., Bogicevic, C., Hull, S., Klug, D. D., & Tse, J. S. (2003). Collapsing Cristobalitelike Structures in Silica Analogues at High Pressure. Physical Review Letters, 91(1). doi:10.1103/physrevlett.91.015503 | es_ES |
dc.description.references | Hazen, R. M., & Finger, L. W. (1979). Bulk modulus-volume relationship for cation-anion polyhedra. Journal of Geophysical Research: Solid Earth, 84(B12), 6723-6728. doi:10.1029/jb084ib12p06723 | es_ES |
dc.description.references | Hazen, R. M., Finger, L. W., & Mariathasan, J. W. E. (1985). High-pressure crystal chemistry of scheelite-type tungstates and molybdates. Journal of Physics and Chemistry of Solids, 46(2), 253-263. doi:10.1016/0022-3697(85)90039-3 | es_ES |
dc.description.references | IUPAC (1970). Nomenclature of Inorganic Solids. Definitive Rules. 3rd ed. London: International Union of Pure and Applied Chemistry. | es_ES |
dc.description.references | Kniep, R., Gözel, G., Eisenmann, B., Röhr, C., Asbrand, M., & Kizilyalli, M. (1994). Borophosphates—A Neglected Class of Compounds: Crystal Structures of MII[BPO5](MII Ca, Sr) and Ba3[BP3O12]. Angewandte Chemie International Edition in English, 33(7), 749-751. doi:10.1002/anie.199407491 | es_ES |
dc.description.references | Kresse, G., & Joubert, D. (1999). From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B, 59(3), 1758-1775. doi:10.1103/physrevb.59.1758 | es_ES |
dc.description.references | Lashin, V. E., Khritokhin, N. A., & Andreev, O. V. (2012). Structure maps of ABX4 inorganic compounds. Russian Journal of Inorganic Chemistry, 57(12), 1584-1587. doi:10.1134/s0036023612120133 | es_ES |
dc.description.references | Léger, J. M., Haines, J., Chateau, C., Bocquillon, G., Schmidt, M. W., Hull, S., … Marchand, R. (2001). Phosphorus oxynitride PON, a silica analogue: structure and compression of the cristobalite-like phase; P - T phase diagram. Physics and Chemistry of Minerals, 28(6), 388-398. doi:10.1007/s002690100161 | es_ES |
dc.description.references | Liu, L. (1982). Phase transformations in MSiO4 compounds at high pressures and their geophysical implications. Earth and Planetary Science Letters, 57(1), 110-116. doi:10.1016/0012-821x(82)90177-7 | es_ES |
dc.description.references | Martín Pendás, A., Costales, A., Blanco, M. A., Recio, J. M., & Luaña, V. (2000). Local compressibilities in crystals. Physical Review B, 62(21), 13970-13978. doi:10.1103/physrevb.62.13970 | es_ES |
dc.description.references | Monkhorst, H. J., & Pack, J. D. (1976). Special points for Brillouin-zone integrations. Physical Review B, 13(12), 5188-5192. doi:10.1103/physrevb.13.5188 | es_ES |
dc.description.references | Mori-Sánchez, P., Pendás, A. M., & Luaña, V. (2001). Polarity inversion in the electron density of BP crystal. Physical Review B, 63(12). doi:10.1103/physrevb.63.125103 | es_ES |
dc.description.references | Muller, O., & Roy, R. (1973). Phase transitions among the ABX4compounds*,1. Zeitschrift für Kristallographie, 138(138), 237-253. doi:10.1524/zkri.1973.138.138.237 | es_ES |
dc.description.references | O’Keeffe, M., & Hyde, B. G. (1976). Cristobalites and topologically-related structures. Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, 32(11), 2923-2936. doi:10.1107/s0567740876009308 | es_ES |
dc.description.references | Otero-de-la-Roza, A., Blanco, M. A., Pendás, A. M., & Luaña, V. (2009). Critic: a new program for the topological analysis of solid-state electron densities. Computer Physics Communications, 180(1), 157-166. doi:10.1016/j.cpc.2008.07.018 | es_ES |
dc.description.references | Otero-de-la-Roza, A., Johnson, E. R., & Contreras-García, J. (2012). Revealing non-covalent interactions in solids: NCI plots revisited. Physical Chemistry Chemical Physics, 14(35), 12165. doi:10.1039/c2cp41395g | es_ES |
dc.description.references | Pauling, L. (1929). THE PRINCIPLES DETERMINING THE STRUCTURE OF COMPLEX IONIC CRYSTALS. Journal of the American Chemical Society, 51(4), 1010-1026. doi:10.1021/ja01379a006 | es_ES |
dc.description.references | Pauling, L. (1960). The Nature of the Chemical Bond and the Structure of Molecules and Crystals: An Introduction to Modern Structural Chemistry, 3rd ed., pp. 543-562. Ithaca: Cornell University Press. | es_ES |
dc.description.references | Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized Gradient Approximation Made Simple. Physical Review Letters, 77(18), 3865-3868. doi:10.1103/physrevlett.77.3865 | es_ES |
dc.description.references | Rahm, M., Zeng, T., & Hoffmann, R. (2018). Electronegativity Seen as the Ground-State Average Valence Electron Binding Energy. Journal of the American Chemical Society, 141(1), 342-351. doi:10.1021/jacs.8b10246 | es_ES |
dc.description.references | Range, K.-J., Wildenauer, M., & Heyns, A. M. (1988). Extremely Short Non-Bonding Oxygen?Oxygen Distances: The Crystal Structures of NbBO4, NaNb3O8, and NaTa3O8. Angewandte Chemie International Edition in English, 27(7), 969-971. doi:10.1002/anie.198809691 | es_ES |
dc.description.references | Recio, J. M., Franco, R., Martín Pendás, A., Blanco, M. A., Pueyo, L., & Pandey, R. (2001). Theoretical explanation of the uniform compressibility behavior observed in oxide spinels. Physical Review B, 63(18). doi:10.1103/physrevb.63.184101 | es_ES |
dc.description.references | Schulze, G. E. R. (1933). Die Kristallstruktur von BPO4 und BAsO4. Die Naturwissenschaften, 21(30), 562-562. doi:10.1007/bf01503856 | es_ES |
dc.description.references | Scott, H. P., Williams, Q., & Knittle, E. (2001). Ultralow Compressibility Silicate without Highly Coordinated Silicon. Physical Review Letters, 88(1). doi:10.1103/physrevlett.88.015506 | es_ES |
dc.description.references | Shannon, R. D. (1976). Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A, 32(5), 751-767. doi:10.1107/s0567739476001551 | es_ES |
dc.description.references | Stubican, V. S., & Roy, R. (1963). High-pressure scheelite-structure polymorphs of rare-earth vanadates and arsenates. Zeitschrift für Kristallographie, 119(1-2), 90-97. doi:10.1524/zkri.1963.119.1-2.90 | es_ES |
dc.description.references | Vinet, P., Ferrante, J., Smith, J. R. & Rose, J. H. (1986). J. Phys. C: Solid State Phys. L, 19, 467. | es_ES |
dc.description.references | Vorres, K. S. (1962). Correlating ABO4 compound structures. Journal of Chemical Education, 39(11), 566. doi:10.1021/ed039p566 | es_ES |
dc.description.references | Yang, W., Parr, R. G., & Uytterhoeven, L. (1987). New relation between hardness and compressibility of minerals. Physics and Chemistry of Minerals, 15(2), 191-195. doi:10.1007/bf00308783 | es_ES |
dc.description.references | Zhang, J., Song, L., Sist, M., Tolborg, K., & Iversen, B. B. (2018). Chemical bonding origin of the unexpected isotropic physical properties in thermoelectric Mg3Sb2 and related materials. Nature Communications, 9(1). doi:10.1038/s41467-018-06980-x | es_ES |