- -

Risk Assessment of Hip Fracture Based on Machine Learning

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Risk Assessment of Hip Fracture Based on Machine Learning

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Galassi, Alessio es_ES
dc.contributor.author Martín-Guerrero, José D. es_ES
dc.contributor.author Villamor, Eduardo es_ES
dc.contributor.author Monserrat Aranda, Carlos es_ES
dc.contributor.author Rupérez Moreno, María José es_ES
dc.date.accessioned 2021-05-14T03:31:30Z
dc.date.available 2021-05-14T03:31:30Z
dc.date.issued 2020-12-22 es_ES
dc.identifier.uri http://hdl.handle.net/10251/166338
dc.description.abstract [EN] Identifying patients with high risk of hip fracture is a great challenge in osteoporosis clinical assessment. Bone Mineral Density (BMD) measured by Dual-Energy X-Ray Absorptiometry (DXA) is the current gold standard in osteoporosis clinical assessment. However, its classification accuracy is only around 65%. In order to improve this accuracy, this paper proposes the use of Machine Learning (ML) models trained with data from a biomechanical model that simulates a sideways-fall. Machine Learning (ML) models are models able to learn and to make predictions from data. During a training process, ML models learn a function that maps inputs and outputs without previous knowledge of the problem. The main advantage of ML models is that once the mapping function is constructed, they can make predictions for complex biomechanical behaviours in real time. However, despite the increasing popularity of Machine Learning (ML) models and their wide application to many fields of medicine, their use as hip fracture predictors is still limited. This paper proposes the use of ML models to assess and predict hip fracture risk. Clinical, geometric, and biomechanical variables from the finite element simulation of a side fall are used as independent variables to train the models. Among the different tested models, Random Forest stands out, showing its capability to outperform BMD-DXA, achieving an accuracy over 87%, with specificity over 92% and sensitivity over 83%. es_ES
dc.description.sponsorship This study was partially funded by the FPI grant (FPI-SP20170111) from the Universitat Politecnica de Valencia obtained by Eduardo Villamor. es_ES
dc.language Inglés es_ES
dc.publisher Hindawi es_ES
dc.relation.ispartof Applied bionics and biomechanics (Online) es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Risk Assessment es_ES
dc.subject Hip Fracture es_ES
dc.subject Machine Learning es_ES
dc.subject.classification INGENIERIA MECANICA es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.title Risk Assessment of Hip Fracture Based on Machine Learning es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1155/2020/8880786 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//SP20170111/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.description.bibliographicCitation Galassi, A.; Martín-Guerrero, JD.; Villamor, E.; Monserrat Aranda, C.; Rupérez Moreno, MJ. (2020). Risk Assessment of Hip Fracture Based on Machine Learning. Applied bionics and biomechanics (Online). 2020:1-13. https://doi.org/10.1155/2020/8880786 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1155/2020/8880786 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 13 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 2020 es_ES
dc.identifier.eissn 1754-2103 es_ES
dc.identifier.pmid 33425008 es_ES
dc.identifier.pmcid PMC7772022 es_ES
dc.relation.pasarela S\425051 es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references World Health OrganizationAssessment of fracture risk and its application to screening for postmenopausal osteoporosis. Report of a WHO Study Group1994http://www.who.int/iris/handle/10665/39142, http://apps.who.int//iris/handle/10665/39142 es_ES
dc.description.references Cooper, C., Campion, G., & Melton, L. J. (1992). Hip fractures in the elderly: A world-wide projection. Osteoporosis International, 2(6), 285-289. doi:10.1007/bf01623184 es_ES
dc.description.references El Maghraoui, A., & Roux, C. (2008). DXA scanning in clinical practice. QJM, 101(8), 605-617. doi:10.1093/qjmed/hcn022 es_ES
dc.description.references Testi, D., Viceconti, M., Cappello, A., & Gnudi, S. (2002). Prediction of Hip Fracture Can Be Significantly Improved by a Single Biomedical Indicator. Annals of Biomedical Engineering, 30(6), 801-807. doi:10.1114/1.1495866 es_ES
dc.description.references Nguyen, N. D., Frost, S. A., Center, J. R., Eisman, J. A., & Nguyen, T. V. (2008). Development of prognostic nomograms for individualizing 5-year and 10-year fracture risks. Osteoporosis International, 19(10), 1431-1444. doi:10.1007/s00198-008-0588-0 es_ES
dc.description.references Bolland, M. J., Siu, A. T., Mason, B. H., Horne, A. M., Ames, R. W., Grey, A. B., … Reid, I. R. (2011). Evaluation of the FRAX and Garvan fracture risk calculators in older women. Journal of Bone and Mineral Research, 26(2), 420-427. doi:10.1002/jbmr.215 es_ES
dc.description.references Fountoulis, G., Kerenidi, T., Kokkinis, C., Georgoulias, P., Thriskos, P., Gourgoulianis, K., … Vlychou, M. (2016). Assessment of Bone Mineral Density in Male Patients with Chronic Obstructive Pulmonary Disease by DXA and Quantitative Computed Tomography. International Journal of Endocrinology, 2016, 1-6. doi:10.1155/2016/6169721 es_ES
dc.description.references Pellicer-Valero, O. J., Rupérez, M. J., Martínez-Sanchis, S., & Martín-Guerrero, J. D. (2020). Real-time biomechanical modeling of the liver using Machine Learning models trained on Finite Element Method simulations. Expert Systems with Applications, 143, 113083. doi:10.1016/j.eswa.2019.113083 es_ES
dc.description.references Martínez-Martínez, F., Rupérez-Moreno, M. J., Martínez-Sober, M., Solves-Llorens, J. A., Lorente, D., Serrano-López, A. J., … Martín-Guerrero, J. D. (2017). A finite element-based machine learning approach for modeling the mechanical behavior of the breast tissues under compression in real-time. Computers in Biology and Medicine, 90, 116-124. doi:10.1016/j.compbiomed.2017.09.019 es_ES
dc.description.references Davenport, T., & Kalakota, R. (2019). The potential for artificial intelligence in healthcare. Future Healthcare Journal, 6(2), 94-98. doi:10.7861/futurehosp.6-2-94 es_ES
dc.description.references Kruse, C., Eiken, P., & Vestergaard, P. (2016). Clinical fracture risk evaluated by hierarchical agglomerative clustering. Osteoporosis International, 28(3), 819-832. doi:10.1007/s00198-016-3828-8 es_ES
dc.description.references Ho-Le, T. P., Center, J. R., Eisman, J. A., Nguyen, T. V., & Nguyen, H. T. (2017). Prediction of hip fracture in post-menopausal women using artificial neural network approach. 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). doi:10.1109/embc.2017.8037784 es_ES
dc.description.references Dall’Ara, E., Eastell, R., Viceconti, M., Pahr, D., & Yang, L. (2016). Experimental validation of DXA-based finite element models for prediction of femoral strength. Journal of the Mechanical Behavior of Biomedical Materials, 63, 17-25. doi:10.1016/j.jmbbm.2016.06.004 es_ES
dc.description.references Enns-Bray, W. S., Bahaloo, H., Fleps, I., Pauchard, Y., Taghizadeh, E., Sigurdsson, S., … Helgason, B. (2019). Biofidelic finite element models for accurately classifying hip fracture in a retrospective clinical study of elderly women from the AGES Reykjavik cohort. Bone, 120, 25-37. doi:10.1016/j.bone.2018.09.014 es_ES
dc.description.references Testi, D., Viceconti, M., Baruffaldi, F., & Cappello, A. (1999). Risk of fracture in elderly patients: a new predictive index based on bone mineral density and finite element analysis. Computer Methods and Programs in Biomedicine, 60(1), 23-33. doi:10.1016/s0169-2607(99)00007-3 es_ES
dc.description.references Yang, L., Palermo, L., Black, D. M., & Eastell, R. (2014). Prediction of Incident Hip Fracture with the Estimated Femoral Strength by Finite Element Analysis of DXA Scans in the Study of Osteoporotic Fractures. Journal of Bone and Mineral Research, 29(12), 2594-2600. doi:10.1002/jbmr.2291 es_ES
dc.description.references Luo, Y., Ahmed, S., & Leslie, W. D. (2018). Automation of a DXA-based finite element tool for clinical assessment of hip fracture risk. Computer Methods and Programs in Biomedicine, 155, 75-83. doi:10.1016/j.cmpb.2017.11.020 es_ES
dc.description.references Terzini, M., Aldieri, A., Rinaudo, L., Osella, G., Audenino, A. L., & Bignardi, C. (2019). Improving the Hip Fracture Risk Prediction Through 2D Finite Element Models From DXA Images: Validation Against 3D Models. Frontiers in Bioengineering and Biotechnology, 7. doi:10.3389/fbioe.2019.00220 es_ES
dc.description.references Nishiyama, K. K., Ito, M., Harada, A., & Boyd, S. K. (2013). Classification of women with and without hip fracture based on quantitative computed tomography and finite element analysis. Osteoporosis International, 25(2), 619-626. doi:10.1007/s00198-013-2459-6 es_ES
dc.description.references Jiang, P., Missoum, S., & Chen, Z. (2015). Fusion of clinical and stochastic finite element data for hip fracture risk prediction. Journal of Biomechanics, 48(15), 4043-4052. doi:10.1016/j.jbiomech.2015.09.044 es_ES
dc.description.references Ferizi, U., Besser, H., Hysi, P., Jacobs, J., Rajapakse, C. S., Chen, C., … Chang, G. (2018). Artificial Intelligence Applied to Osteoporosis: A Performance Comparison of Machine Learning Algorithms in Predicting Fragility Fractures From MRI Data. Journal of Magnetic Resonance Imaging, 49(4), 1029-1038. doi:10.1002/jmri.26280 es_ES
dc.description.references Villamor, E., Monserrat, C., Del Río, L., Romero-Martín, J. A., & Rupérez, M. J. (2020). Prediction of osteoporotic hip fracture in postmenopausal women through patient-specific FE analyses and machine learning. Computer Methods and Programs in Biomedicine, 193, 105484. doi:10.1016/j.cmpb.2020.105484 es_ES
dc.description.references Rossman, T., Kushvaha, V., & Dragomir-Daescu, D. (2015). QCT/FEA predictions of femoral stiffness are strongly affected by boundary condition modeling. Computer Methods in Biomechanics and Biomedical Engineering, 19(2), 208-216. doi:10.1080/10255842.2015.1006209 es_ES
dc.description.references Si, H. (2015). TetGen, a Delaunay-Based Quality Tetrahedral Mesh Generator. ACM Transactions on Mathematical Software, 41(2), 1-36. doi:10.1145/2629697 es_ES
dc.description.references Morgan, E. F., & Keaveny, T. M. (2001). Dependence of yield strain of human trabecular bone on anatomic site. Journal of Biomechanics, 34(5), 569-577. doi:10.1016/s0021-9290(01)00011-2 es_ES
dc.description.references Morgan, E. F., Bayraktar, H. H., & Keaveny, T. M. (2003). Trabecular bone modulus–density relationships depend on anatomic site. Journal of Biomechanics, 36(7), 897-904. doi:10.1016/s0021-9290(03)00071-x es_ES
dc.description.references Bayraktar, H. H., Morgan, E. F., Niebur, G. L., Morris, G. E., Wong, E. K., & Keaveny, T. M. (2004). Comparison of the elastic and yield properties of human femoral trabecular and cortical bone tissue. Journal of Biomechanics, 37(1), 27-35. doi:10.1016/s0021-9290(03)00257-4 es_ES
dc.description.references Wirtz, D. C., Schiffers, N., Pandorf, T., Radermacher, K., Weichert, D., & Forst, R. (2000). Critical evaluation of known bone material properties to realize anisotropic FE-simulation of the proximal femur. Journal of Biomechanics, 33(10), 1325-1330. doi:10.1016/s0021-9290(00)00069-5 es_ES
dc.description.references Eckstein, F., Wunderer, C., Boehm, H., Kuhn, V., Priemel, M., Link, T. M., & Lochmüller, E.-M. (2003). Reproducibility and Side Differences of Mechanical Tests for Determining the Structural Strength of the Proximal Femur. Journal of Bone and Mineral Research, 19(3), 379-385. doi:10.1359/jbmr.0301247 es_ES
dc.description.references Orwoll, E. S., Marshall, L. M., Nielson, C. M., Cummings, S. R., Lapidus, J., … Cauley, J. A. (2009). Finite Element Analysis of the Proximal Femur and Hip Fracture Risk in Older Men. Journal of Bone and Mineral Research, 24(3), 475-483. doi:10.1359/jbmr.081201 es_ES
dc.description.references Maas, S. A., Ellis, B. J., Ateshian, G. A., & Weiss, J. A. (2012). FEBio: Finite Elements for Biomechanics. Journal of Biomechanical Engineering, 134(1). doi:10.1115/1.4005694 es_ES
dc.description.references Choi, W. J., Cripton, P. A., & Robinovitch, S. N. (2014). Effects of hip abductor muscle forces and knee boundary conditions on femoral neck stresses during simulated falls. Osteoporosis International, 26(1), 291-301. doi:10.1007/s00198-014-2812-4 es_ES
dc.description.references Van den Kroonenberg, A. J., Hayes, W. C., & McMahon, T. A. (1995). Dynamic Models for Sideways Falls From Standing Height. Journal of Biomechanical Engineering, 117(3), 309-318. doi:10.1115/1.2794186 es_ES
dc.description.references Robinovitch, S. N., McMahon, T. A., & Hayes, W. C. (1995). Force attenuation in trochanteric soft tissues during impact from a fall. Journal of Orthopaedic Research, 13(6), 956-962. doi:10.1002/jor.1100130621 es_ES
dc.description.references Dufour, A. B., Roberts, B., Broe, K. E., Kiel, D. P., Bouxsein, M. L., & Hannan, M. T. (2011). The factor-of-risk biomechanical approach predicts hip fracture in men and women: the Framingham Study. Osteoporosis International, 23(2), 513-520. doi:10.1007/s00198-011-1569-2 es_ES
dc.description.references BowyerK. W.ChawlaN. V.HallL. O.KegelmeyerW. P.SMOTE: synthetic minority over-sampling techniqueCoRRhttps://arxiv.org/abs/1106.1813 es_ES
dc.subject.ods 03.- Garantizar una vida saludable y promover el bienestar para todos y todas en todas las edades es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem