Mostrar el registro sencillo del ítem
dc.contributor.author | Galassi, Alessio | es_ES |
dc.contributor.author | Martín-Guerrero, José D. | es_ES |
dc.contributor.author | Villamor, Eduardo | es_ES |
dc.contributor.author | Monserrat Aranda, Carlos | es_ES |
dc.contributor.author | Rupérez Moreno, María José | es_ES |
dc.date.accessioned | 2021-05-14T03:31:30Z | |
dc.date.available | 2021-05-14T03:31:30Z | |
dc.date.issued | 2020-12-22 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/166338 | |
dc.description.abstract | [EN] Identifying patients with high risk of hip fracture is a great challenge in osteoporosis clinical assessment. Bone Mineral Density (BMD) measured by Dual-Energy X-Ray Absorptiometry (DXA) is the current gold standard in osteoporosis clinical assessment. However, its classification accuracy is only around 65%. In order to improve this accuracy, this paper proposes the use of Machine Learning (ML) models trained with data from a biomechanical model that simulates a sideways-fall. Machine Learning (ML) models are models able to learn and to make predictions from data. During a training process, ML models learn a function that maps inputs and outputs without previous knowledge of the problem. The main advantage of ML models is that once the mapping function is constructed, they can make predictions for complex biomechanical behaviours in real time. However, despite the increasing popularity of Machine Learning (ML) models and their wide application to many fields of medicine, their use as hip fracture predictors is still limited. This paper proposes the use of ML models to assess and predict hip fracture risk. Clinical, geometric, and biomechanical variables from the finite element simulation of a side fall are used as independent variables to train the models. Among the different tested models, Random Forest stands out, showing its capability to outperform BMD-DXA, achieving an accuracy over 87%, with specificity over 92% and sensitivity over 83%. | es_ES |
dc.description.sponsorship | This study was partially funded by the FPI grant (FPI-SP20170111) from the Universitat Politecnica de Valencia obtained by Eduardo Villamor. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Hindawi | es_ES |
dc.relation.ispartof | Applied bionics and biomechanics (Online) | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Risk Assessment | es_ES |
dc.subject | Hip Fracture | es_ES |
dc.subject | Machine Learning | es_ES |
dc.subject.classification | INGENIERIA MECANICA | es_ES |
dc.subject.classification | LENGUAJES Y SISTEMAS INFORMATICOS | es_ES |
dc.title | Risk Assessment of Hip Fracture Based on Machine Learning | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1155/2020/8880786 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//SP20170111/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació | es_ES |
dc.description.bibliographicCitation | Galassi, A.; Martín-Guerrero, JD.; Villamor, E.; Monserrat Aranda, C.; Rupérez Moreno, MJ. (2020). Risk Assessment of Hip Fracture Based on Machine Learning. Applied bionics and biomechanics (Online). 2020:1-13. https://doi.org/10.1155/2020/8880786 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1155/2020/8880786 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 13 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 2020 | es_ES |
dc.identifier.eissn | 1754-2103 | es_ES |
dc.identifier.pmid | 33425008 | es_ES |
dc.identifier.pmcid | PMC7772022 | es_ES |
dc.relation.pasarela | S\425051 | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.description.references | World Health OrganizationAssessment of fracture risk and its application to screening for postmenopausal osteoporosis. Report of a WHO Study Group1994http://www.who.int/iris/handle/10665/39142, http://apps.who.int//iris/handle/10665/39142 | es_ES |
dc.description.references | Cooper, C., Campion, G., & Melton, L. J. (1992). Hip fractures in the elderly: A world-wide projection. Osteoporosis International, 2(6), 285-289. doi:10.1007/bf01623184 | es_ES |
dc.description.references | El Maghraoui, A., & Roux, C. (2008). DXA scanning in clinical practice. QJM, 101(8), 605-617. doi:10.1093/qjmed/hcn022 | es_ES |
dc.description.references | Testi, D., Viceconti, M., Cappello, A., & Gnudi, S. (2002). Prediction of Hip Fracture Can Be Significantly Improved by a Single Biomedical Indicator. Annals of Biomedical Engineering, 30(6), 801-807. doi:10.1114/1.1495866 | es_ES |
dc.description.references | Nguyen, N. D., Frost, S. A., Center, J. R., Eisman, J. A., & Nguyen, T. V. (2008). Development of prognostic nomograms for individualizing 5-year and 10-year fracture risks. Osteoporosis International, 19(10), 1431-1444. doi:10.1007/s00198-008-0588-0 | es_ES |
dc.description.references | Bolland, M. J., Siu, A. T., Mason, B. H., Horne, A. M., Ames, R. W., Grey, A. B., … Reid, I. R. (2011). Evaluation of the FRAX and Garvan fracture risk calculators in older women. Journal of Bone and Mineral Research, 26(2), 420-427. doi:10.1002/jbmr.215 | es_ES |
dc.description.references | Fountoulis, G., Kerenidi, T., Kokkinis, C., Georgoulias, P., Thriskos, P., Gourgoulianis, K., … Vlychou, M. (2016). Assessment of Bone Mineral Density in Male Patients with Chronic Obstructive Pulmonary Disease by DXA and Quantitative Computed Tomography. International Journal of Endocrinology, 2016, 1-6. doi:10.1155/2016/6169721 | es_ES |
dc.description.references | Pellicer-Valero, O. J., Rupérez, M. J., Martínez-Sanchis, S., & Martín-Guerrero, J. D. (2020). Real-time biomechanical modeling of the liver using Machine Learning models trained on Finite Element Method simulations. Expert Systems with Applications, 143, 113083. doi:10.1016/j.eswa.2019.113083 | es_ES |
dc.description.references | Martínez-Martínez, F., Rupérez-Moreno, M. J., Martínez-Sober, M., Solves-Llorens, J. A., Lorente, D., Serrano-López, A. J., … Martín-Guerrero, J. D. (2017). A finite element-based machine learning approach for modeling the mechanical behavior of the breast tissues under compression in real-time. Computers in Biology and Medicine, 90, 116-124. doi:10.1016/j.compbiomed.2017.09.019 | es_ES |
dc.description.references | Davenport, T., & Kalakota, R. (2019). The potential for artificial intelligence in healthcare. Future Healthcare Journal, 6(2), 94-98. doi:10.7861/futurehosp.6-2-94 | es_ES |
dc.description.references | Kruse, C., Eiken, P., & Vestergaard, P. (2016). Clinical fracture risk evaluated by hierarchical agglomerative clustering. Osteoporosis International, 28(3), 819-832. doi:10.1007/s00198-016-3828-8 | es_ES |
dc.description.references | Ho-Le, T. P., Center, J. R., Eisman, J. A., Nguyen, T. V., & Nguyen, H. T. (2017). Prediction of hip fracture in post-menopausal women using artificial neural network approach. 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). doi:10.1109/embc.2017.8037784 | es_ES |
dc.description.references | Dall’Ara, E., Eastell, R., Viceconti, M., Pahr, D., & Yang, L. (2016). Experimental validation of DXA-based finite element models for prediction of femoral strength. Journal of the Mechanical Behavior of Biomedical Materials, 63, 17-25. doi:10.1016/j.jmbbm.2016.06.004 | es_ES |
dc.description.references | Enns-Bray, W. S., Bahaloo, H., Fleps, I., Pauchard, Y., Taghizadeh, E., Sigurdsson, S., … Helgason, B. (2019). Biofidelic finite element models for accurately classifying hip fracture in a retrospective clinical study of elderly women from the AGES Reykjavik cohort. Bone, 120, 25-37. doi:10.1016/j.bone.2018.09.014 | es_ES |
dc.description.references | Testi, D., Viceconti, M., Baruffaldi, F., & Cappello, A. (1999). Risk of fracture in elderly patients: a new predictive index based on bone mineral density and finite element analysis. Computer Methods and Programs in Biomedicine, 60(1), 23-33. doi:10.1016/s0169-2607(99)00007-3 | es_ES |
dc.description.references | Yang, L., Palermo, L., Black, D. M., & Eastell, R. (2014). Prediction of Incident Hip Fracture with the Estimated Femoral Strength by Finite Element Analysis of DXA Scans in the Study of Osteoporotic Fractures. Journal of Bone and Mineral Research, 29(12), 2594-2600. doi:10.1002/jbmr.2291 | es_ES |
dc.description.references | Luo, Y., Ahmed, S., & Leslie, W. D. (2018). Automation of a DXA-based finite element tool for clinical assessment of hip fracture risk. Computer Methods and Programs in Biomedicine, 155, 75-83. doi:10.1016/j.cmpb.2017.11.020 | es_ES |
dc.description.references | Terzini, M., Aldieri, A., Rinaudo, L., Osella, G., Audenino, A. L., & Bignardi, C. (2019). Improving the Hip Fracture Risk Prediction Through 2D Finite Element Models From DXA Images: Validation Against 3D Models. Frontiers in Bioengineering and Biotechnology, 7. doi:10.3389/fbioe.2019.00220 | es_ES |
dc.description.references | Nishiyama, K. K., Ito, M., Harada, A., & Boyd, S. K. (2013). Classification of women with and without hip fracture based on quantitative computed tomography and finite element analysis. Osteoporosis International, 25(2), 619-626. doi:10.1007/s00198-013-2459-6 | es_ES |
dc.description.references | Jiang, P., Missoum, S., & Chen, Z. (2015). Fusion of clinical and stochastic finite element data for hip fracture risk prediction. Journal of Biomechanics, 48(15), 4043-4052. doi:10.1016/j.jbiomech.2015.09.044 | es_ES |
dc.description.references | Ferizi, U., Besser, H., Hysi, P., Jacobs, J., Rajapakse, C. S., Chen, C., … Chang, G. (2018). Artificial Intelligence Applied to Osteoporosis: A Performance Comparison of Machine Learning Algorithms in Predicting Fragility Fractures From MRI Data. Journal of Magnetic Resonance Imaging, 49(4), 1029-1038. doi:10.1002/jmri.26280 | es_ES |
dc.description.references | Villamor, E., Monserrat, C., Del Río, L., Romero-Martín, J. A., & Rupérez, M. J. (2020). Prediction of osteoporotic hip fracture in postmenopausal women through patient-specific FE analyses and machine learning. Computer Methods and Programs in Biomedicine, 193, 105484. doi:10.1016/j.cmpb.2020.105484 | es_ES |
dc.description.references | Rossman, T., Kushvaha, V., & Dragomir-Daescu, D. (2015). QCT/FEA predictions of femoral stiffness are strongly affected by boundary condition modeling. Computer Methods in Biomechanics and Biomedical Engineering, 19(2), 208-216. doi:10.1080/10255842.2015.1006209 | es_ES |
dc.description.references | Si, H. (2015). TetGen, a Delaunay-Based Quality Tetrahedral Mesh Generator. ACM Transactions on Mathematical Software, 41(2), 1-36. doi:10.1145/2629697 | es_ES |
dc.description.references | Morgan, E. F., & Keaveny, T. M. (2001). Dependence of yield strain of human trabecular bone on anatomic site. Journal of Biomechanics, 34(5), 569-577. doi:10.1016/s0021-9290(01)00011-2 | es_ES |
dc.description.references | Morgan, E. F., Bayraktar, H. H., & Keaveny, T. M. (2003). Trabecular bone modulus–density relationships depend on anatomic site. Journal of Biomechanics, 36(7), 897-904. doi:10.1016/s0021-9290(03)00071-x | es_ES |
dc.description.references | Bayraktar, H. H., Morgan, E. F., Niebur, G. L., Morris, G. E., Wong, E. K., & Keaveny, T. M. (2004). Comparison of the elastic and yield properties of human femoral trabecular and cortical bone tissue. Journal of Biomechanics, 37(1), 27-35. doi:10.1016/s0021-9290(03)00257-4 | es_ES |
dc.description.references | Wirtz, D. C., Schiffers, N., Pandorf, T., Radermacher, K., Weichert, D., & Forst, R. (2000). Critical evaluation of known bone material properties to realize anisotropic FE-simulation of the proximal femur. Journal of Biomechanics, 33(10), 1325-1330. doi:10.1016/s0021-9290(00)00069-5 | es_ES |
dc.description.references | Eckstein, F., Wunderer, C., Boehm, H., Kuhn, V., Priemel, M., Link, T. M., & Lochmüller, E.-M. (2003). Reproducibility and Side Differences of Mechanical Tests for Determining the Structural Strength of the Proximal Femur. Journal of Bone and Mineral Research, 19(3), 379-385. doi:10.1359/jbmr.0301247 | es_ES |
dc.description.references | Orwoll, E. S., Marshall, L. M., Nielson, C. M., Cummings, S. R., Lapidus, J., … Cauley, J. A. (2009). Finite Element Analysis of the Proximal Femur and Hip Fracture Risk in Older Men. Journal of Bone and Mineral Research, 24(3), 475-483. doi:10.1359/jbmr.081201 | es_ES |
dc.description.references | Maas, S. A., Ellis, B. J., Ateshian, G. A., & Weiss, J. A. (2012). FEBio: Finite Elements for Biomechanics. Journal of Biomechanical Engineering, 134(1). doi:10.1115/1.4005694 | es_ES |
dc.description.references | Choi, W. J., Cripton, P. A., & Robinovitch, S. N. (2014). Effects of hip abductor muscle forces and knee boundary conditions on femoral neck stresses during simulated falls. Osteoporosis International, 26(1), 291-301. doi:10.1007/s00198-014-2812-4 | es_ES |
dc.description.references | Van den Kroonenberg, A. J., Hayes, W. C., & McMahon, T. A. (1995). Dynamic Models for Sideways Falls From Standing Height. Journal of Biomechanical Engineering, 117(3), 309-318. doi:10.1115/1.2794186 | es_ES |
dc.description.references | Robinovitch, S. N., McMahon, T. A., & Hayes, W. C. (1995). Force attenuation in trochanteric soft tissues during impact from a fall. Journal of Orthopaedic Research, 13(6), 956-962. doi:10.1002/jor.1100130621 | es_ES |
dc.description.references | Dufour, A. B., Roberts, B., Broe, K. E., Kiel, D. P., Bouxsein, M. L., & Hannan, M. T. (2011). The factor-of-risk biomechanical approach predicts hip fracture in men and women: the Framingham Study. Osteoporosis International, 23(2), 513-520. doi:10.1007/s00198-011-1569-2 | es_ES |
dc.description.references | BowyerK. W.ChawlaN. V.HallL. O.KegelmeyerW. P.SMOTE: synthetic minority over-sampling techniqueCoRRhttps://arxiv.org/abs/1106.1813 | es_ES |
dc.subject.ods | 03.- Garantizar una vida saludable y promover el bienestar para todos y todas en todas las edades | es_ES |