- -

Risk Assessment of Hip Fracture Based on Machine Learning

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Risk Assessment of Hip Fracture Based on Machine Learning

Mostrar el registro completo del ítem

Galassi, A.; Martín-Guerrero, JD.; Villamor, E.; Monserrat Aranda, C.; Rupérez Moreno, MJ. (2020). Risk Assessment of Hip Fracture Based on Machine Learning. Applied bionics and biomechanics (Online). 2020:1-13. https://doi.org/10.1155/2020/8880786

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/166338

Ficheros en el ítem

Metadatos del ítem

Título: Risk Assessment of Hip Fracture Based on Machine Learning
Autor: Galassi, Alessio Martín-Guerrero, José D. Villamor, Eduardo Monserrat Aranda, Carlos Rupérez Moreno, María José
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials
Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació
Fecha difusión:
Resumen:
[EN] Identifying patients with high risk of hip fracture is a great challenge in osteoporosis clinical assessment. Bone Mineral Density (BMD) measured by Dual-Energy X-Ray Absorptiometry (DXA) is the current gold standard ...[+]
Palabras clave: Risk Assessment , Hip Fracture , Machine Learning
Derechos de uso: Reconocimiento (by)
Fuente:
Applied bionics and biomechanics (Online). (eissn: 1754-2103 )
DOI: 10.1155/2020/8880786
Editorial:
Hindawi
Versión del editor: https://doi.org/10.1155/2020/8880786
Código del Proyecto:
info:eu-repo/grantAgreement/UPV//SP20170111/
Agradecimientos:
This study was partially funded by the FPI grant (FPI-SP20170111) from the Universitat Politecnica de Valencia obtained by Eduardo Villamor.
Tipo: Artículo

References

World Health OrganizationAssessment of fracture risk and its application to screening for postmenopausal osteoporosis. Report of a WHO Study Group1994http://www.who.int/iris/handle/10665/39142, http://apps.who.int//iris/handle/10665/39142

Cooper, C., Campion, G., & Melton, L. J. (1992). Hip fractures in the elderly: A world-wide projection. Osteoporosis International, 2(6), 285-289. doi:10.1007/bf01623184

El Maghraoui, A., & Roux, C. (2008). DXA scanning in clinical practice. QJM, 101(8), 605-617. doi:10.1093/qjmed/hcn022 [+]
World Health OrganizationAssessment of fracture risk and its application to screening for postmenopausal osteoporosis. Report of a WHO Study Group1994http://www.who.int/iris/handle/10665/39142, http://apps.who.int//iris/handle/10665/39142

Cooper, C., Campion, G., & Melton, L. J. (1992). Hip fractures in the elderly: A world-wide projection. Osteoporosis International, 2(6), 285-289. doi:10.1007/bf01623184

El Maghraoui, A., & Roux, C. (2008). DXA scanning in clinical practice. QJM, 101(8), 605-617. doi:10.1093/qjmed/hcn022

Testi, D., Viceconti, M., Cappello, A., & Gnudi, S. (2002). Prediction of Hip Fracture Can Be Significantly Improved by a Single Biomedical Indicator. Annals of Biomedical Engineering, 30(6), 801-807. doi:10.1114/1.1495866

Nguyen, N. D., Frost, S. A., Center, J. R., Eisman, J. A., & Nguyen, T. V. (2008). Development of prognostic nomograms for individualizing 5-year and 10-year fracture risks. Osteoporosis International, 19(10), 1431-1444. doi:10.1007/s00198-008-0588-0

Bolland, M. J., Siu, A. T., Mason, B. H., Horne, A. M., Ames, R. W., Grey, A. B., … Reid, I. R. (2011). Evaluation of the FRAX and Garvan fracture risk calculators in older women. Journal of Bone and Mineral Research, 26(2), 420-427. doi:10.1002/jbmr.215

Fountoulis, G., Kerenidi, T., Kokkinis, C., Georgoulias, P., Thriskos, P., Gourgoulianis, K., … Vlychou, M. (2016). Assessment of Bone Mineral Density in Male Patients with Chronic Obstructive Pulmonary Disease by DXA and Quantitative Computed Tomography. International Journal of Endocrinology, 2016, 1-6. doi:10.1155/2016/6169721

Pellicer-Valero, O. J., Rupérez, M. J., Martínez-Sanchis, S., & Martín-Guerrero, J. D. (2020). Real-time biomechanical modeling of the liver using Machine Learning models trained on Finite Element Method simulations. Expert Systems with Applications, 143, 113083. doi:10.1016/j.eswa.2019.113083

Martínez-Martínez, F., Rupérez-Moreno, M. J., Martínez-Sober, M., Solves-Llorens, J. A., Lorente, D., Serrano-López, A. J., … Martín-Guerrero, J. D. (2017). A finite element-based machine learning approach for modeling the mechanical behavior of the breast tissues under compression in real-time. Computers in Biology and Medicine, 90, 116-124. doi:10.1016/j.compbiomed.2017.09.019

Davenport, T., & Kalakota, R. (2019). The potential for artificial intelligence in healthcare. Future Healthcare Journal, 6(2), 94-98. doi:10.7861/futurehosp.6-2-94

Kruse, C., Eiken, P., & Vestergaard, P. (2016). Clinical fracture risk evaluated by hierarchical agglomerative clustering. Osteoporosis International, 28(3), 819-832. doi:10.1007/s00198-016-3828-8

Ho-Le, T. P., Center, J. R., Eisman, J. A., Nguyen, T. V., & Nguyen, H. T. (2017). Prediction of hip fracture in post-menopausal women using artificial neural network approach. 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). doi:10.1109/embc.2017.8037784

Dall’Ara, E., Eastell, R., Viceconti, M., Pahr, D., & Yang, L. (2016). Experimental validation of DXA-based finite element models for prediction of femoral strength. Journal of the Mechanical Behavior of Biomedical Materials, 63, 17-25. doi:10.1016/j.jmbbm.2016.06.004

Enns-Bray, W. S., Bahaloo, H., Fleps, I., Pauchard, Y., Taghizadeh, E., Sigurdsson, S., … Helgason, B. (2019). Biofidelic finite element models for accurately classifying hip fracture in a retrospective clinical study of elderly women from the AGES Reykjavik cohort. Bone, 120, 25-37. doi:10.1016/j.bone.2018.09.014

Testi, D., Viceconti, M., Baruffaldi, F., & Cappello, A. (1999). Risk of fracture in elderly patients: a new predictive index based on bone mineral density and finite element analysis. Computer Methods and Programs in Biomedicine, 60(1), 23-33. doi:10.1016/s0169-2607(99)00007-3

Yang, L., Palermo, L., Black, D. M., & Eastell, R. (2014). Prediction of Incident Hip Fracture with the Estimated Femoral Strength by Finite Element Analysis of DXA Scans in the Study of Osteoporotic Fractures. Journal of Bone and Mineral Research, 29(12), 2594-2600. doi:10.1002/jbmr.2291

Luo, Y., Ahmed, S., & Leslie, W. D. (2018). Automation of a DXA-based finite element tool for clinical assessment of hip fracture risk. Computer Methods and Programs in Biomedicine, 155, 75-83. doi:10.1016/j.cmpb.2017.11.020

Terzini, M., Aldieri, A., Rinaudo, L., Osella, G., Audenino, A. L., & Bignardi, C. (2019). Improving the Hip Fracture Risk Prediction Through 2D Finite Element Models From DXA Images: Validation Against 3D Models. Frontiers in Bioengineering and Biotechnology, 7. doi:10.3389/fbioe.2019.00220

Nishiyama, K. K., Ito, M., Harada, A., & Boyd, S. K. (2013). Classification of women with and without hip fracture based on quantitative computed tomography and finite element analysis. Osteoporosis International, 25(2), 619-626. doi:10.1007/s00198-013-2459-6

Jiang, P., Missoum, S., & Chen, Z. (2015). Fusion of clinical and stochastic finite element data for hip fracture risk prediction. Journal of Biomechanics, 48(15), 4043-4052. doi:10.1016/j.jbiomech.2015.09.044

Ferizi, U., Besser, H., Hysi, P., Jacobs, J., Rajapakse, C. S., Chen, C., … Chang, G. (2018). Artificial Intelligence Applied to Osteoporosis: A Performance Comparison of Machine Learning Algorithms in Predicting Fragility Fractures From MRI Data. Journal of Magnetic Resonance Imaging, 49(4), 1029-1038. doi:10.1002/jmri.26280

Villamor, E., Monserrat, C., Del Río, L., Romero-Martín, J. A., & Rupérez, M. J. (2020). Prediction of osteoporotic hip fracture in postmenopausal women through patient-specific FE analyses and machine learning. Computer Methods and Programs in Biomedicine, 193, 105484. doi:10.1016/j.cmpb.2020.105484

Rossman, T., Kushvaha, V., & Dragomir-Daescu, D. (2015). QCT/FEA predictions of femoral stiffness are strongly affected by boundary condition modeling. Computer Methods in Biomechanics and Biomedical Engineering, 19(2), 208-216. doi:10.1080/10255842.2015.1006209

Si, H. (2015). TetGen, a Delaunay-Based Quality Tetrahedral Mesh Generator. ACM Transactions on Mathematical Software, 41(2), 1-36. doi:10.1145/2629697

Morgan, E. F., & Keaveny, T. M. (2001). Dependence of yield strain of human trabecular bone on anatomic site. Journal of Biomechanics, 34(5), 569-577. doi:10.1016/s0021-9290(01)00011-2

Morgan, E. F., Bayraktar, H. H., & Keaveny, T. M. (2003). Trabecular bone modulus–density relationships depend on anatomic site. Journal of Biomechanics, 36(7), 897-904. doi:10.1016/s0021-9290(03)00071-x

Bayraktar, H. H., Morgan, E. F., Niebur, G. L., Morris, G. E., Wong, E. K., & Keaveny, T. M. (2004). Comparison of the elastic and yield properties of human femoral trabecular and cortical bone tissue. Journal of Biomechanics, 37(1), 27-35. doi:10.1016/s0021-9290(03)00257-4

Wirtz, D. C., Schiffers, N., Pandorf, T., Radermacher, K., Weichert, D., & Forst, R. (2000). Critical evaluation of known bone material properties to realize anisotropic FE-simulation of the proximal femur. Journal of Biomechanics, 33(10), 1325-1330. doi:10.1016/s0021-9290(00)00069-5

Eckstein, F., Wunderer, C., Boehm, H., Kuhn, V., Priemel, M., Link, T. M., & Lochmüller, E.-M. (2003). Reproducibility and Side Differences of Mechanical Tests for Determining the Structural Strength of the Proximal Femur. Journal of Bone and Mineral Research, 19(3), 379-385. doi:10.1359/jbmr.0301247

Orwoll, E. S., Marshall, L. M., Nielson, C. M., Cummings, S. R., Lapidus, J., … Cauley, J. A. (2009). Finite Element Analysis of the Proximal Femur and Hip Fracture Risk in Older Men. Journal of Bone and Mineral Research, 24(3), 475-483. doi:10.1359/jbmr.081201

Maas, S. A., Ellis, B. J., Ateshian, G. A., & Weiss, J. A. (2012). FEBio: Finite Elements for Biomechanics. Journal of Biomechanical Engineering, 134(1). doi:10.1115/1.4005694

Choi, W. J., Cripton, P. A., & Robinovitch, S. N. (2014). Effects of hip abductor muscle forces and knee boundary conditions on femoral neck stresses during simulated falls. Osteoporosis International, 26(1), 291-301. doi:10.1007/s00198-014-2812-4

Van den Kroonenberg, A. J., Hayes, W. C., & McMahon, T. A. (1995). Dynamic Models for Sideways Falls From Standing Height. Journal of Biomechanical Engineering, 117(3), 309-318. doi:10.1115/1.2794186

Robinovitch, S. N., McMahon, T. A., & Hayes, W. C. (1995). Force attenuation in trochanteric soft tissues during impact from a fall. Journal of Orthopaedic Research, 13(6), 956-962. doi:10.1002/jor.1100130621

Dufour, A. B., Roberts, B., Broe, K. E., Kiel, D. P., Bouxsein, M. L., & Hannan, M. T. (2011). The factor-of-risk biomechanical approach predicts hip fracture in men and women: the Framingham Study. Osteoporosis International, 23(2), 513-520. doi:10.1007/s00198-011-1569-2

BowyerK. W.ChawlaN. V.HallL. O.KegelmeyerW. P.SMOTE: synthetic minority over-sampling techniqueCoRRhttps://arxiv.org/abs/1106.1813

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem