- -

QN-Docking: An innovative molecular docking methodology based on Q-Networks

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

QN-Docking: An innovative molecular docking methodology based on Q-Networks

Mostrar el registro completo del ítem

Serrano, A.; Imbernón, B.; Pérez-Sánchez, H.; Cecilia-Canales, JM.; Bueno-Crespo, A.; Abellán, JL. (2020). QN-Docking: An innovative molecular docking methodology based on Q-Networks. Applied Soft Computing. 96:1-12. https://doi.org/10.1016/j.asoc.2020.106678

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/166344

Ficheros en el ítem

Metadatos del ítem

Título: QN-Docking: An innovative molecular docking methodology based on Q-Networks
Autor: Serrano, Antonio Imbernón, Baldomero Pérez-Sánchez, Horacio Cecilia-Canales, José María Bueno-Crespo, Andrés Abellán, José L.
Entidad UPV: Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors
Fecha difusión:
Resumen:
[EN] Molecular docking is often used in computational chemistry to accelerate drug discovery at early stages. Many molecular simulations are performed to select the right pharmacological candidate. However, traditional ...[+]
Palabras clave: Q-network , Reinforcement learning , Artificial neural networks , Structure-based drug design , Molecular docking
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Applied Soft Computing. (issn: 1568-4946 )
DOI: 10.1016/j.asoc.2020.106678
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.asoc.2020.106678
Código del Proyecto:
info:eu-repo/grantAgreement/f SéNeCa//20813%2FPI%2F18/
...[+]
info:eu-repo/grantAgreement/f SéNeCa//20813%2FPI%2F18/
info:eu-repo/grantAgreement/f SéNeCa//20524%2FPDC%2F18/
info:eu-repo/grantAgreement/f SéNeCa//20988%2FPI%2F18/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/CTQ2017-87974-R/ES/DESARROLLO DE TECNICAS AVANZADAS DE DESCUBRIMIENTO DE FARMACOS, SU IMPLEMENTACION EN HERRAMIENTAS SOFTWARE Y WEB, Y SU APLICACION A CONTEXTOS DE RELEVANCIA FARMACOLOGICA/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-096384-B-I00/ES/SOLUCIONES PARA UNA GESTION EFICIENTE DEL TRAFICO VEHICULAR BASADAS EN SISTEMAS Y SERVICIOS EN RED/
info:eu-repo/grantAgreement/AEI//RYC-2018-025580-I/
[-]
Agradecimientos:
This work was partially supported by the Fundacion Seneca del Centro de Coordinacion de la Investigacion de la Region de Murcia (Spain) under Projects 20813/PI/18, 20988/PI/18 and 20524/PDC/18, and by the Spanish Ministry ...[+]
Tipo: Artículo

References

Hajduk, P. J., & Greer, J. (2007). A decade of fragment-based drug design: strategic advances and lessons learned. Nature Reviews Drug Discovery, 6(3), 211-219. doi:10.1038/nrd2220

Kitchen, D. B., Decornez, H., Furr, J. R., & Bajorath, J. (2004). Docking and scoring in virtual screening for drug discovery: methods and applications. Nature Reviews Drug Discovery, 3(11), 935-949. doi:10.1038/nrd1549

Ferreira, L., dos Santos, R., Oliva, G., & Andricopulo, A. (2015). Molecular Docking and Structure-Based Drug Design Strategies. Molecules, 20(7), 13384-13421. doi:10.3390/molecules200713384 [+]
Hajduk, P. J., & Greer, J. (2007). A decade of fragment-based drug design: strategic advances and lessons learned. Nature Reviews Drug Discovery, 6(3), 211-219. doi:10.1038/nrd2220

Kitchen, D. B., Decornez, H., Furr, J. R., & Bajorath, J. (2004). Docking and scoring in virtual screening for drug discovery: methods and applications. Nature Reviews Drug Discovery, 3(11), 935-949. doi:10.1038/nrd1549

Ferreira, L., dos Santos, R., Oliva, G., & Andricopulo, A. (2015). Molecular Docking and Structure-Based Drug Design Strategies. Molecules, 20(7), 13384-13421. doi:10.3390/molecules200713384

Jorgensen, W. L. (2004). The Many Roles of Computation in Drug Discovery. Science, 303(5665), 1813-1818. doi:10.1126/science.1096361

Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural Networks, 61, 85-117. doi:10.1016/j.neunet.2014.09.003

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444. doi:10.1038/nature14539

Chen, H., Engkvist, O., Wang, Y., Olivecrona, M., & Blaschke, T. (2018). The rise of deep learning in drug discovery. Drug Discovery Today, 23(6), 1241-1250. doi:10.1016/j.drudis.2018.01.039

Ghasemi, F., Mehridehnavi, A., Fassihi, A., & Pérez-Sánchez, H. (2018). Deep neural network in QSAR studies using deep belief network. Applied Soft Computing, 62, 251-258. doi:10.1016/j.asoc.2017.09.040

Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., & Pérez-Sánchez, H. (2018). Neural network and deep-learning algorithms used in QSAR studies: merits and drawbacks. Drug Discovery Today, 23(10), 1784-1790. doi:10.1016/j.drudis.2018.06.016

Ragoza, M., Hochuli, J., Idrobo, E., Sunseri, J., & Koes, D. R. (2017). Protein–Ligand Scoring with Convolutional Neural Networks. Journal of Chemical Information and Modeling, 57(4), 942-957. doi:10.1021/acs.jcim.6b00740

Jiménez, J., Doerr, S., Martínez-Rosell, G., Rose, A. S., & De Fabritiis, G. (2017). DeepSite: protein-binding site predictor using 3D-convolutional neural networks. Bioinformatics, 33(19), 3036-3042. doi:10.1093/bioinformatics/btx350

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., … Hassabis, D. (2015). Human-level control through deep reinforcement learning. Nature, 518(7540), 529-533. doi:10.1038/nature14236

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., van den Driessche, G., … Hassabis, D. (2016). Mastering the game of Go with deep neural networks and tree search. Nature, 529(7587), 484-489. doi:10.1038/nature16961

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., … Hassabis, D. (2017). Mastering the game of Go without human knowledge. Nature, 550(7676), 354-359. doi:10.1038/nature24270

Olivecrona, M., Blaschke, T., Engkvist, O., & Chen, H. (2017). Molecular de-novo design through deep reinforcement learning. Journal of Cheminformatics, 9(1). doi:10.1186/s13321-017-0235-x

Popova, M., Isayev, O., & Tropsha, A. (2018). Deep reinforcement learning for de novo drug design. Science Advances, 4(7). doi:10.1126/sciadv.aap7885

Segler, M. H. S., Preuss, M., & Waller, M. P. (2018). Planning chemical syntheses with deep neural networks and symbolic AI. Nature, 555(7698), 604-610. doi:10.1038/nature25978

Lavecchia, A. (2019). Deep learning in drug discovery: opportunities, challenges and future prospects. Drug Discovery Today, 24(10), 2017-2032. doi:10.1016/j.drudis.2019.07.006

Lavecchia, A., & Giovanni, C. (2013). Virtual Screening Strategies in Drug Discovery: A Critical Review. Current Medicinal Chemistry, 20(23), 2839-2860. doi:10.2174/09298673113209990001

Fischer, E. (1894). Einfluss der Configuration auf die Wirkung der Enzyme. Berichte der deutschen chemischen Gesellschaft, 27(3), 2985-2993. doi:10.1002/cber.18940270364

Koshland, D. E. (1963). Correlation of Structure an Function in Enzyme Action. Science, 142(3599), 1533-1541. doi:10.1126/science.142.3599.1533

Shoichet, B. K., Kuntz, I. D., & Bodian, D. L. (1992). Molecular docking using shape descriptors. Journal of Computational Chemistry, 13(3), 380-397. doi:10.1002/jcc.540130311

Meng, X.-Y., Zhang, H.-X., Mezei, M., & Cui, M. (2011). Molecular Docking: A Powerful Approach for Structure-Based Drug Discovery. Current Computer Aided-Drug Design, 7(2), 146-157. doi:10.2174/157340911795677602

Watkins, C. J. C. H., & Dayan, P. (1992). Q-learning. Machine Learning, 8(3-4), 279-292. doi:10.1007/bf00992698

Lin, L.-J. (1992). Self-improving reactive agents based on reinforcement learning, planning and teaching. Machine Learning, 8(3-4), 293-321. doi:10.1007/bf00992699

Pérez-Sianes, J., Pérez-Sánchez, H., & Díaz, F. (2018). Virtual Screening Meets Deep Learning. Current Computer-Aided Drug Design, 15(1), 6-28. doi:10.2174/1573409914666181018141602

Sunseri, J., King, J. E., Francoeur, P. G., & Koes, D. R. (2018). Convolutional neural network scoring and minimization in the D3R 2017 community challenge. Journal of Computer-Aided Molecular Design, 33(1), 19-34. doi:10.1007/s10822-018-0133-y

Jiménez, J., Škalič, M., Martínez-Rosell, G., & De Fabritiis, G. (2018). KDEEP: Protein–Ligand Absolute Binding Affinity Prediction via 3D-Convolutional Neural Networks. Journal of Chemical Information and Modeling, 58(2), 287-296. doi:10.1021/acs.jcim.7b00650

Gonczarek, A., Tomczak, J. M., Zaręba, S., Kaczmar, J., Dąbrowski, P., & Walczak, M. J. (2018). Interaction prediction in structure-based virtual screening using deep learning. Computers in Biology and Medicine, 100, 253-258. doi:10.1016/j.compbiomed.2017.09.007

Pereira, J. C., Caffarena, E. R., & dos Santos, C. N. (2016). Boosting Docking-Based Virtual Screening with Deep Learning. Journal of Chemical Information and Modeling, 56(12), 2495-2506. doi:10.1021/acs.jcim.6b00355

Skalic, M., Varela-Rial, A., Jiménez, J., Martínez-Rosell, G., & De Fabritiis, G. (2018). LigVoxel: inpainting binding pockets using 3D-convolutional neural networks. Bioinformatics, 35(2), 243-250. doi:10.1093/bioinformatics/bty583

Koes, D. R., Baumgartner, M. P., & Camacho, C. J. (2013). Lessons Learned in Empirical Scoring with smina from the CSAR 2011 Benchmarking Exercise. Journal of Chemical Information and Modeling, 53(8), 1893-1904. doi:10.1021/ci300604z

Li, Y., Han, L., Liu, Z., & Wang, R. (2014). Comparative Assessment of Scoring Functions on an Updated Benchmark: 2. Evaluation Methods and General Results. Journal of Chemical Information and Modeling, 54(6), 1717-1736. doi:10.1021/ci500081m

Wu, Z., Ramsundar, B., Feinberg, E. N., Gomes, J., Geniesse, C., Pappu, A. S., … Pande, V. (2018). MoleculeNet: a benchmark for molecular machine learning. Chemical Science, 9(2), 513-530. doi:10.1039/c7sc02664a

Xu, Y., Yao, H., & Lin, K. (2018). An overview of neural networks for drug discovery and the inputs used. Expert Opinion on Drug Discovery, 13(12), 1091-1102. doi:10.1080/17460441.2018.1547278

Pagadala, N. S., Syed, K., & Tuszynski, J. (2017). Software for molecular docking: a review. Biophysical Reviews, 9(2), 91-102. doi:10.1007/s12551-016-0247-1

Lyu, J., Wang, S., Balius, T. E., Singh, I., Levit, A., Moroz, Y. S., … Irwin, J. J. (2019). Ultra-large library docking for discovering new chemotypes. Nature, 566(7743), 224-229. doi:10.1038/s41586-019-0917-9

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem