Mostrar el registro sencillo del ítem
dc.contributor.author | Serrano, Antonio | es_ES |
dc.contributor.author | Imbernón, Baldomero | es_ES |
dc.contributor.author | Pérez-Sánchez, Horacio | es_ES |
dc.contributor.author | Cecilia-Canales, José María | es_ES |
dc.contributor.author | Bueno-Crespo, Andrés | es_ES |
dc.contributor.author | Abellán, José L. | es_ES |
dc.date.accessioned | 2021-05-14T03:31:50Z | |
dc.date.available | 2021-05-14T03:31:50Z | |
dc.date.issued | 2020-11 | es_ES |
dc.identifier.issn | 1568-4946 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/166344 | |
dc.description.abstract | [EN] Molecular docking is often used in computational chemistry to accelerate drug discovery at early stages. Many molecular simulations are performed to select the right pharmacological candidate. However, traditional docking methods are based on optimization heuristics such as Monte Carlo or genetic that try several hundreds of these candidates giving rise to expensive computations. Thus, an alternative methodology called QN-Docking is proposed for developing docking simulations more efficiently. This new approach is built upon Q-learning using a single-layer feedforward neural network to train a single ligand or drug candidate (the agent) to find its optimal interaction with the host molecule. In addition, the corresponding Reinforcement Learning environment and the reward function based on a force-field scoring function are implemented. The proposed method is evaluated in an exemplary molecular scenario based on the kaempferol and beta-cyclodextrin. Results for the prediction phase show that QN-Docking achieves 8x speedup compared to stochastic methods such as METADOCK 2, a novel high-throughput parallel metaheuristic software for docking. Moreover, these results could be extended to many other ligand-host pairs to ultimately develop a general and faster docking method. | es_ES |
dc.description.sponsorship | This work was partially supported by the Fundacion Seneca del Centro de Coordinacion de la Investigacion de la Region de Murcia (Spain) under Projects 20813/PI/18, 20988/PI/18 and 20524/PDC/18, and by the Spanish Ministry of Science and Innovation under grants RTI2018-096384-B-I00, RYC2018-025580-I and CTQ2017-87974-R. The authors also thankfully acknowledge the e-infrastructure program of the Research Council of Norway, and the supercomputer center of UiT -the Arctic University of Norway. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Applied Soft Computing | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Q-network | es_ES |
dc.subject | Reinforcement learning | es_ES |
dc.subject | Artificial neural networks | es_ES |
dc.subject | Structure-based drug design | es_ES |
dc.subject | Molecular docking | es_ES |
dc.subject.classification | ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES | es_ES |
dc.title | QN-Docking: An innovative molecular docking methodology based on Q-Networks | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.asoc.2020.106678 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/f SéNeCa//20813%2FPI%2F18/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/f SéNeCa//20524%2FPDC%2F18/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/f SéNeCa//20988%2FPI%2F18/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/CTQ2017-87974-R/ES/DESARROLLO DE TECNICAS AVANZADAS DE DESCUBRIMIENTO DE FARMACOS, SU IMPLEMENTACION EN HERRAMIENTAS SOFTWARE Y WEB, Y SU APLICACION A CONTEXTOS DE RELEVANCIA FARMACOLOGICA/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-096384-B-I00/ES/SOLUCIONES PARA UNA GESTION EFICIENTE DEL TRAFICO VEHICULAR BASADAS EN SISTEMAS Y SERVICIOS EN RED/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI//RYC-2018-025580-I/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors | es_ES |
dc.description.bibliographicCitation | Serrano, A.; Imbernón, B.; Pérez-Sánchez, H.; Cecilia-Canales, JM.; Bueno-Crespo, A.; Abellán, JL. (2020). QN-Docking: An innovative molecular docking methodology based on Q-Networks. Applied Soft Computing. 96:1-12. https://doi.org/10.1016/j.asoc.2020.106678 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.asoc.2020.106678 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 12 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 96 | es_ES |
dc.relation.pasarela | S\425198 | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | Fundación Séneca-Agencia de Ciencia y Tecnología de la Región de Murcia | es_ES |
dc.description.references | Hajduk, P. J., & Greer, J. (2007). A decade of fragment-based drug design: strategic advances and lessons learned. Nature Reviews Drug Discovery, 6(3), 211-219. doi:10.1038/nrd2220 | es_ES |
dc.description.references | Kitchen, D. B., Decornez, H., Furr, J. R., & Bajorath, J. (2004). Docking and scoring in virtual screening for drug discovery: methods and applications. Nature Reviews Drug Discovery, 3(11), 935-949. doi:10.1038/nrd1549 | es_ES |
dc.description.references | Ferreira, L., dos Santos, R., Oliva, G., & Andricopulo, A. (2015). Molecular Docking and Structure-Based Drug Design Strategies. Molecules, 20(7), 13384-13421. doi:10.3390/molecules200713384 | es_ES |
dc.description.references | Jorgensen, W. L. (2004). The Many Roles of Computation in Drug Discovery. Science, 303(5665), 1813-1818. doi:10.1126/science.1096361 | es_ES |
dc.description.references | Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural Networks, 61, 85-117. doi:10.1016/j.neunet.2014.09.003 | es_ES |
dc.description.references | LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444. doi:10.1038/nature14539 | es_ES |
dc.description.references | Chen, H., Engkvist, O., Wang, Y., Olivecrona, M., & Blaschke, T. (2018). The rise of deep learning in drug discovery. Drug Discovery Today, 23(6), 1241-1250. doi:10.1016/j.drudis.2018.01.039 | es_ES |
dc.description.references | Ghasemi, F., Mehridehnavi, A., Fassihi, A., & Pérez-Sánchez, H. (2018). Deep neural network in QSAR studies using deep belief network. Applied Soft Computing, 62, 251-258. doi:10.1016/j.asoc.2017.09.040 | es_ES |
dc.description.references | Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., & Pérez-Sánchez, H. (2018). Neural network and deep-learning algorithms used in QSAR studies: merits and drawbacks. Drug Discovery Today, 23(10), 1784-1790. doi:10.1016/j.drudis.2018.06.016 | es_ES |
dc.description.references | Ragoza, M., Hochuli, J., Idrobo, E., Sunseri, J., & Koes, D. R. (2017). Protein–Ligand Scoring with Convolutional Neural Networks. Journal of Chemical Information and Modeling, 57(4), 942-957. doi:10.1021/acs.jcim.6b00740 | es_ES |
dc.description.references | Jiménez, J., Doerr, S., Martínez-Rosell, G., Rose, A. S., & De Fabritiis, G. (2017). DeepSite: protein-binding site predictor using 3D-convolutional neural networks. Bioinformatics, 33(19), 3036-3042. doi:10.1093/bioinformatics/btx350 | es_ES |
dc.description.references | Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., … Hassabis, D. (2015). Human-level control through deep reinforcement learning. Nature, 518(7540), 529-533. doi:10.1038/nature14236 | es_ES |
dc.description.references | Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., van den Driessche, G., … Hassabis, D. (2016). Mastering the game of Go with deep neural networks and tree search. Nature, 529(7587), 484-489. doi:10.1038/nature16961 | es_ES |
dc.description.references | Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., … Hassabis, D. (2017). Mastering the game of Go without human knowledge. Nature, 550(7676), 354-359. doi:10.1038/nature24270 | es_ES |
dc.description.references | Olivecrona, M., Blaschke, T., Engkvist, O., & Chen, H. (2017). Molecular de-novo design through deep reinforcement learning. Journal of Cheminformatics, 9(1). doi:10.1186/s13321-017-0235-x | es_ES |
dc.description.references | Popova, M., Isayev, O., & Tropsha, A. (2018). Deep reinforcement learning for de novo drug design. Science Advances, 4(7). doi:10.1126/sciadv.aap7885 | es_ES |
dc.description.references | Segler, M. H. S., Preuss, M., & Waller, M. P. (2018). Planning chemical syntheses with deep neural networks and symbolic AI. Nature, 555(7698), 604-610. doi:10.1038/nature25978 | es_ES |
dc.description.references | Lavecchia, A. (2019). Deep learning in drug discovery: opportunities, challenges and future prospects. Drug Discovery Today, 24(10), 2017-2032. doi:10.1016/j.drudis.2019.07.006 | es_ES |
dc.description.references | Lavecchia, A., & Giovanni, C. (2013). Virtual Screening Strategies in Drug Discovery: A Critical Review. Current Medicinal Chemistry, 20(23), 2839-2860. doi:10.2174/09298673113209990001 | es_ES |
dc.description.references | Fischer, E. (1894). Einfluss der Configuration auf die Wirkung der Enzyme. Berichte der deutschen chemischen Gesellschaft, 27(3), 2985-2993. doi:10.1002/cber.18940270364 | es_ES |
dc.description.references | Koshland, D. E. (1963). Correlation of Structure an Function in Enzyme Action. Science, 142(3599), 1533-1541. doi:10.1126/science.142.3599.1533 | es_ES |
dc.description.references | Shoichet, B. K., Kuntz, I. D., & Bodian, D. L. (1992). Molecular docking using shape descriptors. Journal of Computational Chemistry, 13(3), 380-397. doi:10.1002/jcc.540130311 | es_ES |
dc.description.references | Meng, X.-Y., Zhang, H.-X., Mezei, M., & Cui, M. (2011). Molecular Docking: A Powerful Approach for Structure-Based Drug Discovery. Current Computer Aided-Drug Design, 7(2), 146-157. doi:10.2174/157340911795677602 | es_ES |
dc.description.references | Watkins, C. J. C. H., & Dayan, P. (1992). Q-learning. Machine Learning, 8(3-4), 279-292. doi:10.1007/bf00992698 | es_ES |
dc.description.references | Lin, L.-J. (1992). Self-improving reactive agents based on reinforcement learning, planning and teaching. Machine Learning, 8(3-4), 293-321. doi:10.1007/bf00992699 | es_ES |
dc.description.references | Pérez-Sianes, J., Pérez-Sánchez, H., & Díaz, F. (2018). Virtual Screening Meets Deep Learning. Current Computer-Aided Drug Design, 15(1), 6-28. doi:10.2174/1573409914666181018141602 | es_ES |
dc.description.references | Sunseri, J., King, J. E., Francoeur, P. G., & Koes, D. R. (2018). Convolutional neural network scoring and minimization in the D3R 2017 community challenge. Journal of Computer-Aided Molecular Design, 33(1), 19-34. doi:10.1007/s10822-018-0133-y | es_ES |
dc.description.references | Jiménez, J., Škalič, M., Martínez-Rosell, G., & De Fabritiis, G. (2018). KDEEP: Protein–Ligand Absolute Binding Affinity Prediction via 3D-Convolutional Neural Networks. Journal of Chemical Information and Modeling, 58(2), 287-296. doi:10.1021/acs.jcim.7b00650 | es_ES |
dc.description.references | Gonczarek, A., Tomczak, J. M., Zaręba, S., Kaczmar, J., Dąbrowski, P., & Walczak, M. J. (2018). Interaction prediction in structure-based virtual screening using deep learning. Computers in Biology and Medicine, 100, 253-258. doi:10.1016/j.compbiomed.2017.09.007 | es_ES |
dc.description.references | Pereira, J. C., Caffarena, E. R., & dos Santos, C. N. (2016). Boosting Docking-Based Virtual Screening with Deep Learning. Journal of Chemical Information and Modeling, 56(12), 2495-2506. doi:10.1021/acs.jcim.6b00355 | es_ES |
dc.description.references | Skalic, M., Varela-Rial, A., Jiménez, J., Martínez-Rosell, G., & De Fabritiis, G. (2018). LigVoxel: inpainting binding pockets using 3D-convolutional neural networks. Bioinformatics, 35(2), 243-250. doi:10.1093/bioinformatics/bty583 | es_ES |
dc.description.references | Koes, D. R., Baumgartner, M. P., & Camacho, C. J. (2013). Lessons Learned in Empirical Scoring with smina from the CSAR 2011 Benchmarking Exercise. Journal of Chemical Information and Modeling, 53(8), 1893-1904. doi:10.1021/ci300604z | es_ES |
dc.description.references | Li, Y., Han, L., Liu, Z., & Wang, R. (2014). Comparative Assessment of Scoring Functions on an Updated Benchmark: 2. Evaluation Methods and General Results. Journal of Chemical Information and Modeling, 54(6), 1717-1736. doi:10.1021/ci500081m | es_ES |
dc.description.references | Wu, Z., Ramsundar, B., Feinberg, E. N., Gomes, J., Geniesse, C., Pappu, A. S., … Pande, V. (2018). MoleculeNet: a benchmark for molecular machine learning. Chemical Science, 9(2), 513-530. doi:10.1039/c7sc02664a | es_ES |
dc.description.references | Xu, Y., Yao, H., & Lin, K. (2018). An overview of neural networks for drug discovery and the inputs used. Expert Opinion on Drug Discovery, 13(12), 1091-1102. doi:10.1080/17460441.2018.1547278 | es_ES |
dc.description.references | Pagadala, N. S., Syed, K., & Tuszynski, J. (2017). Software for molecular docking: a review. Biophysical Reviews, 9(2), 91-102. doi:10.1007/s12551-016-0247-1 | es_ES |
dc.description.references | Lyu, J., Wang, S., Balius, T. E., Singh, I., Levit, A., Moroz, Y. S., … Irwin, J. J. (2019). Ultra-large library docking for discovering new chemotypes. Nature, 566(7743), 224-229. doi:10.1038/s41586-019-0917-9 | es_ES |