- -

Valorization of Municipal Biowaste into Electrospun Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Biopapers for Food Packaging Applications

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by


Valorization of Municipal Biowaste into Electrospun Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Biopapers for Food Packaging Applications

Show full item record

Meléndez-Rodríguez, B.; Torres Giner, S.; Lorini, L.; Valentino, F.; Sammon, C.; Cabedo, L.; Lagaron, JM. (2020). Valorization of Municipal Biowaste into Electrospun Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Biopapers for Food Packaging Applications. ACS Applied Bio Materials. 3(9):6110-6123. https://doi.org/10.1021/acsabm.0c00698

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/166350

Files in this item

Item Metadata

Title: Valorization of Municipal Biowaste into Electrospun Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Biopapers for Food Packaging Applications
Author: Meléndez-Rodríguez, Beatriz Torres Giner, Sergio Lorini, Laura Valentino, Francesco Sammon, Chris Cabedo, Luis Lagaron, Jose Maria
UPV Unit: Universitat Politècnica de València. Instituto Universitario de Ingeniería de Alimentos para el Desarrollo - Institut Universitari d'Enginyeria d'Aliments per al Desenvolupament
Issued date:
[EN] The present study reports on the production and characterization of a new biopackaging material made of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) derived from municipal biowaste (MBW) and produced by the ...[+]
Subjects: PHBV , Electrospinning , Biopapers , Waste valorization , Food packaging , Circular bioeconomy
Copyrigths: Reserva de todos los derechos
ACS Applied Bio Materials. (eissn: 2576-6422 )
DOI: 10.1021/acsabm.0c00698
Publisher version: https://doi.org/10.1021/acsabm.0c00698
Project ID:
info:eu-repo/grantAgreement/ALBA Synchrotron Light Source//2018022619/
info:eu-repo/grantAgreement/EC/H2020/836884/EU/Unlocking the potential of Sustainable BiodegradabLe Packaging/
info:eu-repo/grantAgreement/ALBA Synchrotron Light Source//BL11-NCD-SWEET/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-097249-B-C21/ES/ENVASE ACTIVO MULTICAPA TERMOCONFORMABLE DE ALTA BARRERA BASADO EN BIOECONOMIA CIRCULAR/
Description: American Chemical Society
The Spanish Ministry of Science and Innovation (MICI) project RTI2018-097249-B-C21 and EU projects H2020 YPACK (reference number 773872) and H2020 USABLE (reference number 836884) are acknowledged for funding support. ...[+]
Type: Artículo


REHM, B. H. A. (2003). Polyester synthases: natural catalysts for plastics. Biochemical Journal, 376(1), 15-33. doi:10.1042/bj20031254

Singh Saharan, B., Grewal, A., & Kumar, P. (2014). Biotechnological Production of Polyhydroxyalkanoates: A Review on Trends and Latest Developments. Chinese Journal of Biology, 2014, 1-18. doi:10.1155/2014/802984

Koller, M., Maršálek, L., de Sousa Dias, M. M., & Braunegg, G. (2017). Producing microbial polyhydroxyalkanoate (PHA) biopolyesters in a sustainable manner. New Biotechnology, 37, 24-38. doi:10.1016/j.nbt.2016.05.001 [+]
REHM, B. H. A. (2003). Polyester synthases: natural catalysts for plastics. Biochemical Journal, 376(1), 15-33. doi:10.1042/bj20031254

Singh Saharan, B., Grewal, A., & Kumar, P. (2014). Biotechnological Production of Polyhydroxyalkanoates: A Review on Trends and Latest Developments. Chinese Journal of Biology, 2014, 1-18. doi:10.1155/2014/802984

Koller, M., Maršálek, L., de Sousa Dias, M. M., & Braunegg, G. (2017). Producing microbial polyhydroxyalkanoate (PHA) biopolyesters in a sustainable manner. New Biotechnology, 37, 24-38. doi:10.1016/j.nbt.2016.05.001

Kourmentza, C., & Kornaros, M. (2016). Biotransformation of volatile fatty acids to polyhydroxyalkanoates by employing mixed microbial consortia: The effect of pH and carbon source. Bioresource Technology, 222, 388-398. doi:10.1016/j.biortech.2016.10.014

Torres-Giner, S., Montanes, N., Fombuena, V., Boronat, T., & Sanchez-Nacher, L. (2016). Preparation and characterization of compression-molded green composite sheets made of poly(3-hydroxybutyrate) reinforced with long pita fibers. Advances in Polymer Technology, 37(5), 1305-1315. doi:10.1002/adv.21789

Sängerlaub, S., Brüggemann, M., Rodler, N., Jost, V., & Bauer, K. D. (2019). Extrusion Coating of Paper with Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV)—Packaging Related Functional Properties. Coatings, 9(7), 457. doi:10.3390/coatings9070457

Acevedo, F., Villegas, P., Urtuvia, V., Hermosilla, J., Navia, R., & Seeger, M. (2018). Bacterial polyhydroxybutyrate for electrospun fiber production. International Journal of Biological Macromolecules, 106, 692-697. doi:10.1016/j.ijbiomac.2017.08.066

Fabra, M. J., Lopez-Rubio, A., & Lagaron, J. M. (2014). Nanostructured interlayers of zein to improve the barrier properties of high barrier polyhydroxyalkanoates and other polyesters. Journal of Food Engineering, 127, 1-9. doi:10.1016/j.jfoodeng.2013.11.022

Laycock, B., Halley, P., Pratt, S., Werker, A., & Lant, P. (2013). The chemomechanical properties of microbial polyhydroxyalkanoates. Progress in Polymer Science, 38(3-4), 536-583. doi:10.1016/j.progpolymsci.2012.06.003

Choi, J., & Lee, S. Y. (1997). Process analysis and economic evaluation for Poly(3-hydroxybutyrate) production by fermentation. Bioprocess Engineering, 17(6), 335. doi:10.1007/s004490050394

Reis, M., Albuquerque, M., Villano, M., & Majone, M. (2011). Mixed Culture Processes for Polyhydroxyalkanoate Production from Agro-Industrial Surplus/Wastes as Feedstocks. Comprehensive Biotechnology, 669-683. doi:10.1016/b978-0-08-088504-9.00464-5

Fernández-Dacosta, C., Posada, J. A., Kleerebezem, R., Cuellar, M. C., & Ramirez, A. (2015). Microbial community-based polyhydroxyalkanoates (PHAs) production from wastewater: Techno-economic analysis and ex-ante environmental assessment. Bioresource Technology, 185, 368-377. doi:10.1016/j.biortech.2015.03.025

Gurieff, N., & Lant, P. (2007). Comparative life cycle assessment and financial analysis of mixed culture polyhydroxyalkanoate production. Bioresource Technology, 98(17), 3393-3403. doi:10.1016/j.biortech.2006.10.046

Albuquerque, M. G. E., Torres, C. A. V., & Reis, M. A. M. (2010). Polyhydroxyalkanoate (PHA) production by a mixed microbial culture using sugar molasses: Effect of the influent substrate concentration on culture selection. Water Research, 44(11), 3419-3433. doi:10.1016/j.watres.2010.03.021

Dionisi, D., Carucci, G., Papini, M. P., Riccardi, C., Majone, M., & Carrasco, F. (2005). Olive oil mill effluents as a feedstock for production of biodegradable polymers. Water Research, 39(10), 2076-2084. doi:10.1016/j.watres.2005.03.011

Ali Hassan, M., Shirai, Y., Kusubayashi, N., Ismail Abdul Karim, M., Nakanishi, K., & Hasimoto, K. (1997). The production of polyhydroxyalkanoate from anaerobically treated palm oil mill effluent by Rhodobacter sphaeroides. Journal of Fermentation and Bioengineering, 83(5), 485-488. doi:10.1016/s0922-338x(97)83007-3

Melendez-Rodriguez, B., Castro-Mayorga, J. L., Reis, M. A. M., Sammon, C., Cabedo, L., Torres-Giner, S., & Lagaron, J. M. (2018). Preparation and Characterization of Electrospun Food Biopackaging Films of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Derived From Fruit Pulp Biowaste. Frontiers in Sustainable Food Systems, 2. doi:10.3389/fsufs.2018.00038

Colombo, B., Pepè Sciarria, T., Reis, M., Scaglia, B., & Adani, F. (2016). Polyhydroxyalkanoates (PHAs) production from fermented cheese whey by using a mixed microbial culture. Bioresource Technology, 218, 692-699. doi:10.1016/j.biortech.2016.07.024

Morgan-Sagastume, F., Hjort, M., Cirne, D., Gérardin, F., Lacroix, S., Gaval, G., … Werker, A. (2015). Integrated production of polyhydroxyalkanoates (PHAs) with municipal wastewater and sludge treatment at pilot scale. Bioresource Technology, 181, 78-89. doi:10.1016/j.biortech.2015.01.046

Mata-Alvarez, J., Dosta, J., Romero-Güiza, M. S., Fonoll, X., Peces, M., & Astals, S. (2014). A critical review on anaerobic co-digestion achievements between 2010 and 2013. Renewable and Sustainable Energy Reviews, 36, 412-427. doi:10.1016/j.rser.2014.04.039

Korkakaki, E., Mulders, M., Veeken, A., Rozendal, R., van Loosdrecht, M. C. M., & Kleerebezem, R. (2016). PHA production from the organic fraction of municipal solid waste (OFMSW): Overcoming the inhibitory matrix. Water Research, 96, 74-83. doi:10.1016/j.watres.2016.03.033

Zhang, M., Wu, H., & Chen, H. (2014). Coupling of polyhydroxyalkanoate production with volatile fatty acid from food wastes and excess sludge. Process Safety and Environmental Protection, 92(2), 171-178. doi:10.1016/j.psep.2012.12.002

Coats, E. R., Loge, F. J., Wolcott, M. P., Englund, K., & McDonald, A. G. (2007). Synthesis of Polyhydroxyalkanoates in Municipal Wastewater Treatment. Water Environment Research, 79(12), 2396-2403. doi:10.2175/106143007x183907

Doshi, J., & Reneker, D. H. (1995). Electrospinning process and applications of electrospun fibers. Journal of Electrostatics, 35(2-3), 151-160. doi:10.1016/0304-3886(95)00041-8

Cherpinski, A., Torres-Giner, S., Cabedo, L., & Lagaron, J. M. (2017). Post-processing optimization of electrospun submicron poly(3-hydroxybutyrate) fibers to obtain continuous films of interest in food packaging applications. Food Additives & Contaminants: Part A, 34(10), 1817-1830. doi:10.1080/19440049.2017.1355115

Cherpinski, A., Torres‐Giner, S., Cabedo, L., Méndez, J. A., & Lagaron, J. M. (2017). Multilayer structures based on annealed electrospun biopolymer coatings of interest in water and aroma barrier fiber‐based food packaging applications. Journal of Applied Polymer Science, 135(24), 45501. doi:10.1002/app.45501

Spagnol, C., Fragal, E. H., Pereira, A. G. B., Nakamura, C. V., Muniz, E. C., Follmann, H. D. M., … Rubira, A. F. (2018). Cellulose nanowhiskers decorated with silver nanoparticles as an additive to antibacterial polymers membranes fabricated by electrospinning. Journal of Colloid and Interface Science, 531, 705-715. doi:10.1016/j.jcis.2018.07.096

Hu, M., Li, C., Li, X., Zhou, M., Sun, J., Sheng, F., … Lu, L. (2017). Zinc oxide/silver bimetallic nanoencapsulated in PVP/PCL nanofibres for improved antibacterial activity. Artificial Cells, Nanomedicine, and Biotechnology, 46(6), 1248-1257. doi:10.1080/21691401.2017.1366339

Alp-Erbay, E., Figueroa-Lopez, K. J., Lagaron, J. M., Çağlak, E., & Torres-Giner, S. (2019). The impact of electrospun films of poly(ε-caprolactone) filled with nanostructured zeolite and silica microparticles on in vitro histamine formation by Staphylococcus aureus and Salmonella Paratyphi A. Food Packaging and Shelf Life, 22, 100414. doi:10.1016/j.fpsl.2019.100414

Quiles-Carrillo, L., Montanes, N., Lagaron, J., Balart, R., & Torres-Giner, S. (2019). Bioactive Multilayer Polylactide Films with Controlled Release Capacity of Gallic Acid Accomplished by Incorporating Electrospun Nanostructured Coatings and Interlayers. Applied Sciences, 9(3), 533. doi:10.3390/app9030533

Cherpinski, A., Gozutok, M., Sasmazel, H., Torres-Giner, S., & Lagaron, J. (2018). Electrospun Oxygen Scavenging Films of Poly(3-hydroxybutyrate) Containing Palladium Nanoparticles for Active Packaging Applications. Nanomaterials, 8(7), 469. doi:10.3390/nano8070469

Lasprilla-Botero, J., Torres-Giner, S., Pardo-Figuerez, M., Álvarez-Láinez, M., & M. Lagaron, J. (2018). Superhydrophobic Bilayer Coating Based on Annealed Electrospun Ultrathin Poly(ε-caprolactone) Fibers and Electrosprayed Nanostructured Silica Microparticles for Easy Emptying Packaging Applications. Coatings, 8(5), 173. doi:10.3390/coatings8050173

Valentino, F., Moretto, G., Lorini, L., Bolzonella, D., Pavan, P., & Majone, M. (2019). Pilot-Scale Polyhydroxyalkanoate Production from Combined Treatment of Organic Fraction of Municipal Solid Waste and Sewage Sludge. Industrial & Engineering Chemistry Research, 58(27), 12149-12158. doi:10.1021/acs.iecr.9b01831

Fiorese, Mã´. L., Freitas, F., Pais, J., Ramos, A. M., de Aragão, G. M. F., & Reis, M. A. M. (2009). Recovery of polyhydroxybutyrate (PHB) from Cupriavidus necator biomass by solvent extraction with 1,2-propylene carbonate. Engineering in Life Sciences, 9(6), 454-461. doi:10.1002/elsc.200900034

Madkour, M. H., Heinrich, D., Alghamdi, M. A., Shabbaj, I. I., & Steinbüchel, A. (2013). PHA Recovery from Biomass. Biomacromolecules, 14(9), 2963-2972. doi:10.1021/bm4010244

Griffin, G. J. L. (Ed.). (1994). Chemistry and Technology of Biodegradable Polymers. doi:10.1007/978-94-011-1330-4

Li, L., Huang, W., Wang, B., Wei, W., Gu, Q., & Chen, P. (2015). Properties and structure of polylactide/poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PLA/PHBV) blend fibers. Polymer, 68, 183-194. doi:10.1016/j.polymer.2015.05.024

Torres-Giner, S., Wilkanowicz, S., Melendez-Rodriguez, B., & Lagaron, J. M. (2017). Nanoencapsulation of Aloe vera in Synthetic and Naturally Occurring Polymers by Electrohydrodynamic Processing of Interest in Food Technology and Bioactive Packaging. Journal of Agricultural and Food Chemistry, 65(22), 4439-4448. doi:10.1021/acs.jafc.7b01393

Melendez-Rodriguez, B., Figueroa-Lopez, K. J., Bernardos, A., Martínez-Máñez, R., Cabedo, L., Torres-Giner, S., & Lagaron, J. M. (2019). Electrospun Antimicrobial Films of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Containing Eugenol Essential Oil Encapsulated in Mesoporous Silica Nanoparticles. Nanomaterials, 9(2), 227. doi:10.3390/nano9020227

Shiku, Y., Yuca Hamaguchi, P., Benjakul, S., Visessanguan, W., & Tanaka, M. (2004). Effect of surimi quality on properties of edible films based on Alaska pollack. Food Chemistry, 86(4), 493-499. doi:10.1016/j.foodchem.2003.09.022

Kanatt, S. R., Rao, M. S., Chawla, S. P., & Sharma, A. (2012). Active chitosan–polyvinyl alcohol films with natural extracts. Food Hydrocolloids, 29(2), 290-297. doi:10.1016/j.foodhyd.2012.03.005

Arfat, Y. A., Ahmed, J., Hiremath, N., Auras, R., & Joseph, A. (2017). Thermo-mechanical, rheological, structural and antimicrobial properties of bionanocomposite films based on fish skin gelatin and silver-copper nanoparticles. Food Hydrocolloids, 62, 191-202. doi:10.1016/j.foodhyd.2016.08.009

Agüero, A., Morcillo, M. del C., Quiles-Carrillo, L., Balart, R., Boronat, T., Lascano, D., … Fenollar, O. (2019). Study of the Influence of the Reprocessing Cycles on the Final Properties of Polylactide Pieces Obtained by Injection Molding. Polymers, 11(12), 1908. doi:10.3390/polym11121908

Melendez-Rodriguez, B., Torres-Giner, S., Aldureid, A., Cabedo, L., & Lagaron, J. M. (2019). Reactive Melt Mixing of Poly(3-Hydroxybutyrate)/Rice Husk Flour Composites with Purified Biosustainably Produced Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate). Materials, 12(13), 2152. doi:10.3390/ma12132152

Kunasundari, B., & Sudesh, K. (2011). Isolation and recovery of microbial polyhydroxyalkanoates. Express Polymer Letters, 5(7), 620-634. doi:10.3144/expresspolymlett.2011.60

Figueroa-Lopez, K. J., Vicente, A. A., Reis, M. A. M., Torres-Giner, S., & Lagaron, J. M. (2019). Antimicrobial and Antioxidant Performance of Various Essential Oils and Natural Extracts and Their Incorporation into Biowaste Derived Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Layers Made from Electrospun Ultrathin Fibers. Nanomaterials, 9(2), 144. doi:10.3390/nano9020144

Jung, H.-R., Choi, T.-R., Han, Y. H., Park, Y.-L., Park, J. Y., Song, H.-S., … Yang, Y.-H. (2020). Production of blue-colored polyhydroxybutyrate (PHB) by one-pot production and coextraction of indigo and PHB from recombinant Escherichia coli. Dyes and Pigments, 173, 107889. doi:10.1016/j.dyepig.2019.107889

Zhang, K., Misra, M., & Mohanty, A. K. (2014). Toughened Sustainable Green Composites from Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Based Ternary Blends and Miscanthus Biofiber. ACS Sustainable Chemistry & Engineering, 2(10), 2345-2354. doi:10.1021/sc500353v

Sanchez-Garcia, M. D., Gimenez, E., & Lagaron, J. M. (2008). Morphology and barrier properties of solvent cast composites of thermoplastic biopolymers and purified cellulose fibers. Carbohydrate Polymers, 71(2), 235-244. doi:10.1016/j.carbpol.2007.05.041

Castro Mayorga, J. L., Fabra Rovira, M. J., Cabedo Mas, L., Sánchez Moragas, G., & Lagarón Cabello, J. M. (2017). Antimicrobial nanocomposites and electrospun coatings based on poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and copper oxide nanoparticles for active packaging and coating applications. Journal of Applied Polymer Science, 135(2), 45673. doi:10.1002/app.45673

Castro-Mayorga, J. L., Fabra, M. J., & Lagaron, J. M. (2016). Stabilized nanosilver based antimicrobial poly(3-hydroxybutyrate-co-3-hydroxyvalerate) nanocomposites of interest in active food packaging. Innovative Food Science & Emerging Technologies, 33, 524-533. doi:10.1016/j.ifset.2015.10.019

Torres-Giner, S., Montanes, N., Boronat, T., Quiles-Carrillo, L., & Balart, R. (2016). Melt grafting of sepiolite nanoclay onto poly(3-hydroxybutyrate-co-4-hydroxybutyrate) by reactive extrusion with multi-functional epoxy-based styrene-acrylic oligomer. European Polymer Journal, 84, 693-707. doi:10.1016/j.eurpolymj.2016.09.057

Torres-Giner, S., Gimeno-Alcañiz, J. V., Ocio, M. J., & Lagaron, J. M. (2011). Optimization of electrospun polylactide-based ultrathin fibers for osteoconductive bone scaffolds. Journal of Applied Polymer Science, 122(2), 914-925. doi:10.1002/app.34208

Riekel, C., Garc�a Guti�rrez, M. C., Gourrier, A., & Roth, S. (2003). Recent synchrotron radiation microdiffraction experiments on polymer and biopolymer fibers. Analytical and Bioanalytical Chemistry, 376(5), 594-601. doi:10.1007/s00216-003-1976-0

Sato, H., Suttiwijitpukdee, N., Hashimoto, T., & Ozaki, Y. (2012). Simultaneous Synchrotron SAXS/WAXD Study of Composition Fluctuations, Cold-Crystallization, and Melting in Biodegradable Polymer Blends of Cellulose Acetate Butyrate and Poly(3-hydroxybutyrate). Macromolecules, 45(6), 2783-2795. doi:10.1021/ma202606y

Vahabi, H., Michely, L., Moradkhani, G., Akbari, V., Cochez, M., Vagner, C., … Langlois, V. (2019). Thermal Stability and Flammability Behavior of Poly(3-hydroxybutyrate) (PHB) Based Composites. Materials, 12(14), 2239. doi:10.3390/ma12142239

Panaitescu, D. M., Nicolae, C. A., Frone, A. N., Chiulan, I., Stanescu, P. O., Draghici, C., … Mihailescu, M. (2017). Plasticized poly(3-hydroxybutyrate) with improved melt processing and balanced properties. Journal of Applied Polymer Science, 134(19). doi:10.1002/app.44810

S̆krbić, Z., & Divjaković, V. (1996). Temperature influence on changes of parameters of the unit cell of biopolymer PHB. Polymer, 37(3), 505-507. doi:10.1016/0032-3861(96)82922-3

Harini, K., & Sukumar, M. (2019). Development of cellulose-based migratory and nonmigratory active packaging films. Carbohydrate Polymers, 204, 202-213. doi:10.1016/j.carbpol.2018.10.018

Tanpichai, S., Witayakran, S., Wootthikanokkhan, J., Srimarut, Y., Woraprayote, W., & Malila, Y. (2020). Mechanical and antibacterial properties of the chitosan coated cellulose paper for packaging applications: Effects of molecular weight types and concentrations of chitosan. International Journal of Biological Macromolecules, 155, 1510-1519. doi:10.1016/j.ijbiomac.2019.11.128

Cherpinski, A., Torres-Giner, S., Vartiainen, J., Peresin, M. S., Lahtinen, P., & Lagaron, J. M. (2018). Improving the water resistance of nanocellulose-based films with polyhydroxyalkanoates processed by the electrospinning coating technique. Cellulose, 25(2), 1291-1307. doi:10.1007/s10570-018-1648-z

Torres-Giner, S., Hilliou, L., Melendez-Rodriguez, B., Figueroa-Lopez, K. J., Madalena, D., Cabedo, L., … Lagaron, J. M. (2018). Melt processability, characterization, and antibacterial activity of compression-molded green composite sheets made of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) reinforced with coconut fibers impregnated with oregano essential oil. Food Packaging and Shelf Life, 17, 39-49. doi:10.1016/j.fpsl.2018.05.002

Shibata, M., Oyamada, S., Kobayashi, S., & Yaginuma, D. (2004). Mechanical properties and biodegradability of green composites based on biodegradable polyesters and lyocell fabric. Journal of Applied Polymer Science, 92(6), 3857-3863. doi:10.1002/app.20405

Quiles-Carrillo, L., Montanes, N., Lagaron, J. M., Balart, R., & Torres-Giner, S. (2018). In Situ Compatibilization of Biopolymer Ternary Blends by Reactive Extrusion with Low-Functionality Epoxy-Based Styrene–Acrylic Oligomer. Journal of Polymers and the Environment, 27(1), 84-96. doi:10.1007/s10924-018-1324-2

Ali Dadfar, S. M., Alemzadeh, I., Reza Dadfar, S. M., & Vosoughi, M. (2011). Studies on the oxygen barrier and mechanical properties of low density polyethylene/organoclay nanocomposite films in the presence of ethylene vinyl acetate copolymer as a new type of compatibilizer. Materials & Design, 32(4), 1806-1813. doi:10.1016/j.matdes.2010.12.028

Sanchez-Garcia, M. D., Gimenez, E., & Lagaron, J. M. (2007). Novel PET Nanocomposites of Interest in Food Packaging Applications and Comparative Barrier Performance With Biopolyester Nanocomposites. Journal of Plastic Film & Sheeting, 23(2), 133-148. doi:10.1177/8756087907083590

Lagaron, J.-M. (2011). Multifunctional and nanoreinforced polymers for food packaging. doi:10.1533/9780857092786




This item appears in the following Collection(s)

Show full item record