- -

New Eco-Friendly Polymeric-Coated Urea Fertilizers Enhanced Crop Yield in Wheat

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

New Eco-Friendly Polymeric-Coated Urea Fertilizers Enhanced Crop Yield in Wheat

Mostrar el registro completo del ítem

Gil-Ortiz, R.; Naranjo, MÁ.; Ruiz-Navarro, A.; Caballero-Molada, M.; Atares, S.; García, C.; Vicente, O. (2020). New Eco-Friendly Polymeric-Coated Urea Fertilizers Enhanced Crop Yield in Wheat. Agronomy. 10(3):1-15. https://doi.org/10.3390/agronomy10030438

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/166351

Ficheros en el ítem

Metadatos del ítem

Título: New Eco-Friendly Polymeric-Coated Urea Fertilizers Enhanced Crop Yield in Wheat
Autor: Gil-Ortiz, Ricardo Naranjo, Miguel Ángel Ruiz-Navarro, Antonio Caballero-Molada, Marcos Atares, Sergio García, Carlos Vicente, Oscar
Entidad UPV: Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia
Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes
Fecha difusión:
Resumen:
[EN] Presently, there is a growing interest in developing new controlled-release fertilizers based on ecological raw materials. The present study aims to compare the efficacy of two new ureic-based controlled-release ...[+]
Palabras clave: Coated-urea fertilizer , Humic acid , Lignosulfonate , Natural polymers , Seaweed extract , Wheat
Derechos de uso: Reconocimiento (by)
Fuente:
Agronomy. (eissn: 2073-4395 )
DOI: 10.3390/agronomy10030438
Editorial:
MDPI
Versión del editor: https://doi.org/10.3390/agronomy10030438
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//RTC-2014-1457-5Q4618002BC.VALENCIANA/ES/LOS CRFS COMO ALTERNATIVA A LOS FERTILIZANTES TRADICIONALES: BUSCANDO UNA MEJOR PROTECCIÓN DEL MEDIO AMBIENTE/
Agradecimientos:
This research was funded by the Spanish Ministry of Economy and Competitiveness, grant number RTC-2014-1457-5, with the project entitled "Los CRFs como alternativa a los fertilizantes tradicionales: buscando una mayor ...[+]
Tipo: Artículo

References

FAOSTAThttp://www.fao.org/faostat/en/#data/QC

Feng, J., Li, F., Deng, A., Feng, X., Fang, F., & Zhang, W. (2016). Integrated assessment of the impact of enhanced-efficiency nitrogen fertilizer on N2O emission and crop yield. Agriculture, Ecosystems & Environment, 231, 218-228. doi:10.1016/j.agee.2016.06.038

Barakat, M., Cheviron, B., & Angulo-Jaramillo, R. (2016). Influence of the irrigation technique and strategies on the nitrogen cycle and budget: A review. Agricultural Water Management, 178, 225-238. doi:10.1016/j.agwat.2016.09.027 [+]
FAOSTAThttp://www.fao.org/faostat/en/#data/QC

Feng, J., Li, F., Deng, A., Feng, X., Fang, F., & Zhang, W. (2016). Integrated assessment of the impact of enhanced-efficiency nitrogen fertilizer on N2O emission and crop yield. Agriculture, Ecosystems & Environment, 231, 218-228. doi:10.1016/j.agee.2016.06.038

Barakat, M., Cheviron, B., & Angulo-Jaramillo, R. (2016). Influence of the irrigation technique and strategies on the nitrogen cycle and budget: A review. Agricultural Water Management, 178, 225-238. doi:10.1016/j.agwat.2016.09.027

Zak, D. R., Holmes, W. E., MacDonald, N. W., & Pregitzer, K. S. (1999). Soil Temperature, Matric Potential, and the Kinetics of Microbial Respiration and Nitrogen Mineralization. Soil Science Society of America Journal, 63(3), 575-584. doi:10.2136/sssaj1999.03615995006300030021x

Achat, D. L., Augusto, L., Gallet-Budynek, A., & Loustau, D. (2016). Future challenges in coupled C–N–P cycle models for terrestrial ecosystems under global change: a review. Biogeochemistry, 131(1-2), 173-202. doi:10.1007/s10533-016-0274-9

Di, H. J., & Cameron, K. C. (2016). Inhibition of nitrification to mitigate nitrate leaching and nitrous oxide emissions in grazed grassland: a review. Journal of Soils and Sediments, 16(5), 1401-1420. doi:10.1007/s11368-016-1403-8

Akelah, A. (1996). Novel utilizations of conventional agrochemicals by controlled release formulations. Materials Science and Engineering: C, 4(2), 83-98. doi:10.1016/0928-4931(96)00133-6

Shaviv, A., & Mikkelsen, R. L. (1993). Controlled-release fertilizers to increase efficiency of nutrient use and minimize environmental degradation - A review. Fertilizer Research, 35(1-2), 1-12. doi:10.1007/bf00750215

Xiaoyu, N., Yuejin, W., Zhengyan, W., Lin, W., Guannan, Q., & Lixiang, Y. (2013). A novel slow-release urea fertiliser: Physical and chemical analysis of its structure and study of its release mechanism. Biosystems Engineering, 115(3), 274-282. doi:10.1016/j.biosystemseng.2013.04.001

Prasad, R., Rajale, G. B., & Lakhdive, B. A. (1971). Nitrification Retarders and Slow-Release Nitrogen Fertilizers. Advances in Agronomy, 337-383. doi:10.1016/s0065-2113(08)60156-x

Wang, Z.-H., Miao, Y., & Li, S.-X. (2016). Wheat responses to ammonium and nitrate N applied at different sown and input times. Field Crops Research, 199, 10-20. doi:10.1016/j.fcr.2016.09.002

Naz, M. Y., & Sulaiman, S. A. (2016). Slow release coating remedy for nitrogen loss from conventional urea: a review. Journal of Controlled Release, 225, 109-120. doi:10.1016/j.jconrel.2016.01.037

Chien, S. H., Prochnow, L. I., & Cantarella, H. (2009). Chapter 8 Recent Developments of Fertilizer Production and Use to Improve Nutrient Efficiency and Minimize Environmental Impacts. Advances in Agronomy, 267-322. doi:10.1016/s0065-2113(09)01008-6

Diez, J. A., Caballero, R., Bustos, A., Roman, R., Cartagena, M. C., & Vallejo, A. (1996). Control of nitrate pollution by application of controlled release fertilizer (CRF), compost and an optimized irrigation system. Fertilizer Research, 43(1-3), 191-195. doi:10.1007/bf00747701

Halvorson, A. D., Snyder, C. S., Blaylock, A. D., & Del Grosso, S. J. (2014). Enhanced‐Efficiency Nitrogen Fertilizers: Potential Role in Nitrous Oxide Emission Mitigation. Agronomy Journal, 106(2), 715-722. doi:10.2134/agronj2013.0081

Carson, L. C., & Ozores-Hampton, M. (2013). Factors Affecting Nutrient Availability, Placement, Rate, and Application Timing of Controlled-release Fertilizers for Florida Vegetable Production Using Seepage Irrigation. HortTechnology, 23(5), 553-562. doi:10.21273/horttech.23.5.553

Azeem, B., KuShaari, K., Man, Z. B., Basit, A., & Thanh, T. H. (2014). Review on materials & methods to produce controlled release coated urea fertilizer. Journal of Controlled Release, 181, 11-21. doi:10.1016/j.jconrel.2014.02.020

Herrera, J., Rubio, G., Häner, L., Delgado, J., Lucho-Constantino, C., Islas-Valdez, S., & Pellet, D. (2016). Emerging and Established Technologies to Increase Nitrogen Use Efficiency of Cereals. Agronomy, 6(2), 25. doi:10.3390/agronomy6020025

Dou, H., & Alva, A. K. (1998). Nitrogen uptake and growth of two citrus rootstock seedlings in a sandy soil receiving different controlled-release fertilizer sources. Biology and Fertility of Soils, 26(3), 169-172. doi:10.1007/s003740050363

Feng, C., Lü, S., Gao, C., Wang, X., Xu, X., Bai, X., … Wu, L. (2015). «Smart» Fertilizer with Temperature- and pH-Responsive Behavior via Surface-Initiated Polymerization for Controlled Release of Nutrients. ACS Sustainable Chemistry & Engineering, 3(12), 3157-3166. doi:10.1021/acssuschemeng.5b01384

Kenawy, E.-R. (1998). Recent Advances in Controlled Release of Agrochemicals. Journal of Macromolecular Science, Part C: Polymer Reviews, 38(3), 365-390. doi:10.1080/15583729808546028

Majeed, Z., Ramli, N. K., Mansor, N., & Man, Z. (2015). A comprehensive review on biodegradable polymers and their blends used in controlled-release fertilizer processes. Reviews in Chemical Engineering, 31(1). doi:10.1515/revce-2014-0021

Chowdhury, M. A. (2014). The controlled release of bioactive compounds from lignin and lignin-based biopolymer matrices. International Journal of Biological Macromolecules, 65, 136-147. doi:10.1016/j.ijbiomac.2014.01.012

Fernández-Pérez, M., Garrido-Herrera, F. J., González-Pradas, E., Villafranca-Sánchez, M., & Flores-Céspedes, F. (2008). Lignin and ethylcellulose as polymers in controlled release formulations of urea. Journal of Applied Polymer Science, 108(6), 3796-3803. doi:10.1002/app.27987

Abalos, D., Jeffery, S., Sanz-Cobena, A., Guardia, G., & Vallejo, A. (2014). Meta-analysis of the effect of urease and nitrification inhibitors on crop productivity and nitrogen use efficiency. Agriculture, Ecosystems & Environment, 189, 136-144. doi:10.1016/j.agee.2014.03.036

Battacharyya, D., Babgohari, M. Z., Rathor, P., & Prithiviraj, B. (2015). Seaweed extracts as biostimulants in horticulture. Scientia Horticulturae, 196, 39-48. doi:10.1016/j.scienta.2015.09.012

Calvo, P., Nelson, L., & Kloepper, J. W. (2014). Agricultural uses of plant biostimulants. Plant and Soil, 383(1-2), 3-41. doi:10.1007/s11104-014-2131-8

Canellas, L. P., Olivares, F. L., Aguiar, N. O., Jones, D. L., Nebbioso, A., Mazzei, P., & Piccolo, A. (2015). Humic and fulvic acids as biostimulants in horticulture. Scientia Horticulturae, 196, 15-27. doi:10.1016/j.scienta.2015.09.013

Colla, G., Nardi, S., Cardarelli, M., Ertani, A., Lucini, L., Canaguier, R., & Rouphael, Y. (2015). Protein hydrolysates as biostimulants in horticulture. Scientia Horticulturae, 196, 28-38. doi:10.1016/j.scienta.2015.08.037

Du Jardin, P. (2015). Plant biostimulants: Definition, concept, main categories and regulation. Scientia Horticulturae, 196, 3-14. doi:10.1016/j.scienta.2015.09.021

Birrenkott, B. A., Craig, J. L., & McVey, G. R. (2005). A Leach Collection System to Track the Release of Nitrogen from Controlled-release Fertilizers in Container Ornamentals. HortScience, 40(6), 1887-1891. doi:10.21273/hortsci.40.6.1887

Clark, M. J., & Zheng, Y. (2015). Species-specific fertilization can benefit container nursery crop production. Canadian Journal of Plant Science, 95(2), 251-262. doi:10.4141/cjps-2014-340

Cox, D. A. (1993). Reducing nitrogen leaching‐losses from containerized plants: The effectiveness of controlled‐release fertilizers. Journal of Plant Nutrition, 16(3), 533-545. doi:10.1080/01904169309364552

Agegnehu, G., Nelson, P. N., & Bird, M. I. (2016). The effects of biochar, compost and their mixture and nitrogen fertilizer on yield and nitrogen use efficiency of barley grown on a Nitisol in the highlands of Ethiopia. Science of The Total Environment, 569-570, 869-879. doi:10.1016/j.scitotenv.2016.05.033

Huett, D. O., & Gogel, B. J. (2000). Longevities and nitrogen, phosphorus, and potassium release patterns of polymer‐coated controlled‐release fertilizers at 30°C and 40°C. Communications in Soil Science and Plant Analysis, 31(7-8), 959-973. doi:10.1080/00103620009370490

YANG, L., WANG, L., LI, H., QIU, J., & LIU, H. (2014). Impacts of Fertilization Alternatives and Crop Straw Incorporation on N2O Emissions from a Spring Maize Field in Northeastern China. Journal of Integrative Agriculture, 13(4), 881-892. doi:10.1016/s2095-3119(13)60496-7

Harrison, R., & Webb, J. (2001). A review of the effect of N fertilizer type on gaseous emissions. Advances in Agronomy, 65-108. doi:10.1016/s0065-2113(01)73005-2

Obreza, T. A., Rouse, R. E., & Sherrod, J. B. (1999). Economics of Controlled-Release Fertilizer Use on Young Citrus Trees. Journal of Production Agriculture, 12(1), 69-73. doi:10.2134/jpa1999.0069

García, C., Vallejo, A., Diéz, J. A., García, L., & Cartagena, M. C. (1997). Nitrogen use efficiency with the application of controlled release fertilizers coated with Kraft pine lignin. Soil Science and Plant Nutrition, 43(2), 443-449. doi:10.1080/00380768.1997.10414768

Medina, L. C., Sartain, J. B., Obreza, T. A., Hall, W. L., & Thiex, N. J. (2014). Evaluation of a Soil Incubation Method to Characterize Nitrogen Release Patterns of Slow- and Controlled-Release Fertilizers. Journal of AOAC INTERNATIONAL, 97(3), 643-660. doi:10.5740/jaoacint.13-065

Gasparin, E., Araujo, M. M., Saldanha, C. W., & Tolfo, C. V. (2015). <b>Controlled release fertilizer and container volumes in the production of Parapiptadenia rigida (Benth.) Brenan seedlings. Acta Scientiarum. Agronomy, 37(4), 473. doi:10.4025/actasciagron.v37i4.19528

Haver, D. L., & Schuch, U. K. (1996). Production and Postproduction Performance of Two New Guinea Impatiens Cultivars Grown with Controlled-release Fertilizer and No Leaching. Journal of the American Society for Horticultural Science, 121(5), 820-825. doi:10.21273/jashs.121.5.820

Jacobs, D. F., Salifu, K. F., & Seifert, J. R. (2005). Growth and nutritional response of hardwood seedlings to controlled-release fertilization at outplanting. Forest Ecology and Management, 214(1-3), 28-39. doi:10.1016/j.foreco.2005.03.053

Kaplan, L., Tlustoš, P., Száková, J., & Najmanová, J. (2013). The influence of slow-release fertilizers on potted chrysanthemum growth and nutrient consumption &nbsp; Plant, Soil and Environment, 59(No. 9), 385-391. doi:10.17221/45/2013-pse

Kinoshita, T., Yano, T., Sugiura, M., & Nagasaki, Y. (2014). Effects of Controlled-Release Fertilizer on Leaf Area Index and Fruit Yield in High-Density Soilless Tomato Culture Using Low Node-Order Pinching. PLoS ONE, 9(11), e113074. doi:10.1371/journal.pone.0113074

Kinoshita, T., Yamazaki, H., Inamoto, K., & Yamazaki, H. (2016). Analysis of yield components and dry matter production in a simplified soilless tomato culture system by using controlled-release fertilizers during summer–winter greenhouse production. Scientia Horticulturae, 202, 17-24. doi:10.1016/j.scienta.2016.02.019

Oliet, J., Planelles, R., Segura, M. L., Artero, F., & Jacobs, D. F. (2004). Mineral nutrition and growth of containerized Pinus halepensis seedlings under controlled-release fertilizer. Scientia Horticulturae, 103(1), 113-129. doi:10.1016/j.scienta.2004.04.019

Pack, J. E., Hutchinson, C. M., & Simonne, E. H. (2006). Evaluation of Controlled-Release Fertilizers for Northeast Florida Chip Potato Production. Journal of Plant Nutrition, 29(7), 1301-1313. doi:10.1080/01904160600767633

Vishtal, A., & Kraslawski, A. (2011). Challenges in industrial applications of technical lignins. BioResources, 6(3), 3547-3568. doi:10.15376/biores.6.3.vishtal

Cacco, G., Attinà, E., Gelsomino, A., & Sidari, M. (2000). Effect of nitrate and humic substances of different molecular size on kinetic parameters of nitrate uptake in wheat seedlings. Journal of Plant Nutrition and Soil Science, 163(3), 313-320. doi:10.1002/1522-2624(200006)163:3<313::aid-jpln313>3.0.co;2-u

Nardi, S., Ertani, A., & Francioso, O. (2016). Soil-root cross-talking: The role of humic substances. Journal of Plant Nutrition and Soil Science, 180(1), 5-13. doi:10.1002/jpln.201600348

Michalak, I., Górka, B., Wieczorek, P. P., Rój, E., Lipok, J., Łęska, B., … Chojnacka, K. (2016). Supercritical fluid extraction of algae enhances levels of biologically active compounds promoting plant growth. European Journal of Phycology, 51(3), 243-252. doi:10.1080/09670262.2015.1134813

Lötze, E., & Hoffman, E. W. (2015). Nutrient composition and content of various biological active compounds of three South African-based commercial seaweed biostimulants. Journal of Applied Phycology, 28(2), 1379-1386. doi:10.1007/s10811-015-0644-z

Gaju, O., DeSilva, J., Carvalho, P., Hawkesford, M. J., Griffiths, S., Greenland, A., & Foulkes, M. J. (2016). Leaf photosynthesis and associations with grain yield, biomass and nitrogen-use efficiency in landraces, synthetic-derived lines and cultivars in wheat. Field Crops Research, 193, 1-15. doi:10.1016/j.fcr.2016.04.018

Richards, R. A. (2000). Selectable traits to increase crop photosynthesis and yield of grain crops. Journal of Experimental Botany, 51(suppl_1), 447-458. doi:10.1093/jexbot/51.suppl_1.447

Ji, Y., Liu, G., Ma, J., Xu, H., & Yagi, K. (2012). Effect of controlled-release fertilizer on nitrous oxide emission from a winter wheat field. Nutrient Cycling in Agroecosystems, 94(1), 111-122. doi:10.1007/s10705-012-9532-y

Grunes, D. L. (1959). Effect of Nitrogen on the Availability of Soil and Fertilizer Phosphorus to Plants. Advances in Agronomy, 369-396. doi:10.1016/s0065-2113(08)60127-3

Zhao, B., Dong, S., Zhang, J., & Liu, P. (2013). Effects of Controlled-Release Fertiliser on Nitrogen Use Efficiency in Summer Maize. PLoS ONE, 8(8), e70569. doi:10.1371/journal.pone.0070569

Dong, Y. J., He, M. ., Wang, Z. ., Chen, W. ., Hou, J., Qiu, X. ., & Zhang, J. . (2016). Effects of new coated release fertilizer on the growth of maize. Journal of soil science and plant nutrition, (ahead), 0-0. doi:10.4067/s0718-95162016005000046

Mi, W., Yang, X., Wu, L., Ma, Q., Liu, Y., & Zhang, X. (2016). Evaluation of Nitrogen Fertilizer and Cultivation Methods for Agronomic Performance of Rice. Agronomy Journal, 108(5), 1907-1916. doi:10.2134/agronj2016.01.0038

Roshanravan, B., Mahmoud Soltani, S., Mahdavi, F., Abdul Rashid, S., & Khanif Yusop, M. (2014). Preparation of encapsulated urea-kaolinite controlled release fertiliser and their effect on rice productivity. Chemical Speciation & Bioavailability, 26(4), 249-256. doi:10.3184/095422914x14146901352512

Morikawa, C. K., Saigusa, M., Nakanishi, H., Nishizawa, N. K., Hasegawa, K., & Mori, S. (2004). Co-situsapplication of controlled-release fertilizers to alleviate iron chlorosis of paddy rice grown in calcareous soil. Soil Science and Plant Nutrition, 50(7), 1013-1021. doi:10.1080/00380768.2004.10408568

Morikawa, C. K., Saigusa, M., Nishizawa, N. K., & Mori, S. (2008). Importance of contact between rice roots and co-situs applied fertilizer granules on iron absorption by paddy rice in a calcareous paddy soil. Soil Science and Plant Nutrition, 54(3), 467-472. doi:10.1111/j.1747-0765.2008.00254.x

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem