- -

New Eco-Friendly Polymeric-Coated Urea Fertilizers Enhanced Crop Yield in Wheat

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

New Eco-Friendly Polymeric-Coated Urea Fertilizers Enhanced Crop Yield in Wheat

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Gil-Ortiz, Ricardo es_ES
dc.contributor.author Naranjo, Miguel Ángel es_ES
dc.contributor.author Ruiz-Navarro, Antonio es_ES
dc.contributor.author Caballero-Molada, Marcos es_ES
dc.contributor.author Atares, Sergio es_ES
dc.contributor.author García, Carlos es_ES
dc.contributor.author Vicente, Oscar es_ES
dc.date.accessioned 2021-05-14T03:32:11Z
dc.date.available 2021-05-14T03:32:11Z
dc.date.issued 2020-03 es_ES
dc.identifier.uri http://hdl.handle.net/10251/166351
dc.description.abstract [EN] Presently, there is a growing interest in developing new controlled-release fertilizers based on ecological raw materials. The present study aims to compare the efficacy of two new ureic-based controlled-release fertilizers formulated with water-soluble polymeric coatings enriched with humic acids or seaweed extracts. To this end, an experimental approach was designed under controlled greenhouse conditions by carrying out its subsequent field scaling. Different physiological parameters and crop yield were measured by comparing the new fertilizers with another non polymeric-coated fertilizer, ammonium nitrate, and an untreated 'Control'. As a result, on the microscale the fertilizer enriched with humic acids favored a better global response in the photosynthetic parameters and nutritional status of wheat plants. A significant 1.2-fold increase in grain weight yield and grain number was obtained with the humic acid polymeric fertilizer versus that enriched with seaweed extracts; and also, in average, higher in respect to the uncoated one. At the field level, similar results were confirmed by lowering N doses by 20% when applying the humic acid polymeric-coated produce compared to ammonium nitrate. Our results showed that the new humic acid polymeric fertilizer facilitated crop management and reduced the environmental impact generated by N losses, which are usually produced by traditional fertilizers. es_ES
dc.description.sponsorship This research was funded by the Spanish Ministry of Economy and Competitiveness, grant number RTC-2014-1457-5, with the project entitled "Los CRFs como alternativa a los fertilizantes tradicionales: buscando una mayor proteccion del medio ambiente". es_ES
dc.language Inglés es_ES
dc.publisher MDPI es_ES
dc.relation.ispartof Agronomy es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Coated-urea fertilizer es_ES
dc.subject Humic acid es_ES
dc.subject Lignosulfonate es_ES
dc.subject Natural polymers es_ES
dc.subject Seaweed extract es_ES
dc.subject Wheat es_ES
dc.subject.classification BIOQUIMICA Y BIOLOGIA MOLECULAR es_ES
dc.title New Eco-Friendly Polymeric-Coated Urea Fertilizers Enhanced Crop Yield in Wheat es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/agronomy10030438 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//RTC-2014-1457-5Q4618002BC.VALENCIANA/ES/LOS CRFS COMO ALTERNATIVA A LOS FERTILIZANTES TRADICIONALES: BUSCANDO UNA MEJOR PROTECCIÓN DEL MEDIO AMBIENTE/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.description.bibliographicCitation Gil-Ortiz, R.; Naranjo, MÁ.; Ruiz-Navarro, A.; Caballero-Molada, M.; Atares, S.; García, C.; Vicente, O. (2020). New Eco-Friendly Polymeric-Coated Urea Fertilizers Enhanced Crop Yield in Wheat. Agronomy. 10(3):1-15. https://doi.org/10.3390/agronomy10030438 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/agronomy10030438 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 15 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 10 es_ES
dc.description.issue 3 es_ES
dc.identifier.eissn 2073-4395 es_ES
dc.relation.pasarela S\406489 es_ES
dc.contributor.funder Ministerio de Economía y Empresa es_ES
dc.description.references FAOSTAThttp://www.fao.org/faostat/en/#data/QC es_ES
dc.description.references Feng, J., Li, F., Deng, A., Feng, X., Fang, F., & Zhang, W. (2016). Integrated assessment of the impact of enhanced-efficiency nitrogen fertilizer on N2O emission and crop yield. Agriculture, Ecosystems & Environment, 231, 218-228. doi:10.1016/j.agee.2016.06.038 es_ES
dc.description.references Barakat, M., Cheviron, B., & Angulo-Jaramillo, R. (2016). Influence of the irrigation technique and strategies on the nitrogen cycle and budget: A review. Agricultural Water Management, 178, 225-238. doi:10.1016/j.agwat.2016.09.027 es_ES
dc.description.references Zak, D. R., Holmes, W. E., MacDonald, N. W., & Pregitzer, K. S. (1999). Soil Temperature, Matric Potential, and the Kinetics of Microbial Respiration and Nitrogen Mineralization. Soil Science Society of America Journal, 63(3), 575-584. doi:10.2136/sssaj1999.03615995006300030021x es_ES
dc.description.references Achat, D. L., Augusto, L., Gallet-Budynek, A., & Loustau, D. (2016). Future challenges in coupled C–N–P cycle models for terrestrial ecosystems under global change: a review. Biogeochemistry, 131(1-2), 173-202. doi:10.1007/s10533-016-0274-9 es_ES
dc.description.references Di, H. J., & Cameron, K. C. (2016). Inhibition of nitrification to mitigate nitrate leaching and nitrous oxide emissions in grazed grassland: a review. Journal of Soils and Sediments, 16(5), 1401-1420. doi:10.1007/s11368-016-1403-8 es_ES
dc.description.references Akelah, A. (1996). Novel utilizations of conventional agrochemicals by controlled release formulations. Materials Science and Engineering: C, 4(2), 83-98. doi:10.1016/0928-4931(96)00133-6 es_ES
dc.description.references Shaviv, A., & Mikkelsen, R. L. (1993). Controlled-release fertilizers to increase efficiency of nutrient use and minimize environmental degradation - A review. Fertilizer Research, 35(1-2), 1-12. doi:10.1007/bf00750215 es_ES
dc.description.references Xiaoyu, N., Yuejin, W., Zhengyan, W., Lin, W., Guannan, Q., & Lixiang, Y. (2013). A novel slow-release urea fertiliser: Physical and chemical analysis of its structure and study of its release mechanism. Biosystems Engineering, 115(3), 274-282. doi:10.1016/j.biosystemseng.2013.04.001 es_ES
dc.description.references Prasad, R., Rajale, G. B., & Lakhdive, B. A. (1971). Nitrification Retarders and Slow-Release Nitrogen Fertilizers. Advances in Agronomy, 337-383. doi:10.1016/s0065-2113(08)60156-x es_ES
dc.description.references Wang, Z.-H., Miao, Y., & Li, S.-X. (2016). Wheat responses to ammonium and nitrate N applied at different sown and input times. Field Crops Research, 199, 10-20. doi:10.1016/j.fcr.2016.09.002 es_ES
dc.description.references Naz, M. Y., & Sulaiman, S. A. (2016). Slow release coating remedy for nitrogen loss from conventional urea: a review. Journal of Controlled Release, 225, 109-120. doi:10.1016/j.jconrel.2016.01.037 es_ES
dc.description.references Chien, S. H., Prochnow, L. I., & Cantarella, H. (2009). Chapter 8 Recent Developments of Fertilizer Production and Use to Improve Nutrient Efficiency and Minimize Environmental Impacts. Advances in Agronomy, 267-322. doi:10.1016/s0065-2113(09)01008-6 es_ES
dc.description.references Diez, J. A., Caballero, R., Bustos, A., Roman, R., Cartagena, M. C., & Vallejo, A. (1996). Control of nitrate pollution by application of controlled release fertilizer (CRF), compost and an optimized irrigation system. Fertilizer Research, 43(1-3), 191-195. doi:10.1007/bf00747701 es_ES
dc.description.references Halvorson, A. D., Snyder, C. S., Blaylock, A. D., & Del Grosso, S. J. (2014). Enhanced‐Efficiency Nitrogen Fertilizers: Potential Role in Nitrous Oxide Emission Mitigation. Agronomy Journal, 106(2), 715-722. doi:10.2134/agronj2013.0081 es_ES
dc.description.references Carson, L. C., & Ozores-Hampton, M. (2013). Factors Affecting Nutrient Availability, Placement, Rate, and Application Timing of Controlled-release Fertilizers for Florida Vegetable Production Using Seepage Irrigation. HortTechnology, 23(5), 553-562. doi:10.21273/horttech.23.5.553 es_ES
dc.description.references Azeem, B., KuShaari, K., Man, Z. B., Basit, A., & Thanh, T. H. (2014). Review on materials & methods to produce controlled release coated urea fertilizer. Journal of Controlled Release, 181, 11-21. doi:10.1016/j.jconrel.2014.02.020 es_ES
dc.description.references Herrera, J., Rubio, G., Häner, L., Delgado, J., Lucho-Constantino, C., Islas-Valdez, S., & Pellet, D. (2016). Emerging and Established Technologies to Increase Nitrogen Use Efficiency of Cereals. Agronomy, 6(2), 25. doi:10.3390/agronomy6020025 es_ES
dc.description.references Dou, H., & Alva, A. K. (1998). Nitrogen uptake and growth of two citrus rootstock seedlings in a sandy soil receiving different controlled-release fertilizer sources. Biology and Fertility of Soils, 26(3), 169-172. doi:10.1007/s003740050363 es_ES
dc.description.references Feng, C., Lü, S., Gao, C., Wang, X., Xu, X., Bai, X., … Wu, L. (2015). «Smart» Fertilizer with Temperature- and pH-Responsive Behavior via Surface-Initiated Polymerization for Controlled Release of Nutrients. ACS Sustainable Chemistry & Engineering, 3(12), 3157-3166. doi:10.1021/acssuschemeng.5b01384 es_ES
dc.description.references Kenawy, E.-R. (1998). Recent Advances in Controlled Release of Agrochemicals. Journal of Macromolecular Science, Part C: Polymer Reviews, 38(3), 365-390. doi:10.1080/15583729808546028 es_ES
dc.description.references Majeed, Z., Ramli, N. K., Mansor, N., & Man, Z. (2015). A comprehensive review on biodegradable polymers and their blends used in controlled-release fertilizer processes. Reviews in Chemical Engineering, 31(1). doi:10.1515/revce-2014-0021 es_ES
dc.description.references Chowdhury, M. A. (2014). The controlled release of bioactive compounds from lignin and lignin-based biopolymer matrices. International Journal of Biological Macromolecules, 65, 136-147. doi:10.1016/j.ijbiomac.2014.01.012 es_ES
dc.description.references Fernández-Pérez, M., Garrido-Herrera, F. J., González-Pradas, E., Villafranca-Sánchez, M., & Flores-Céspedes, F. (2008). Lignin and ethylcellulose as polymers in controlled release formulations of urea. Journal of Applied Polymer Science, 108(6), 3796-3803. doi:10.1002/app.27987 es_ES
dc.description.references Abalos, D., Jeffery, S., Sanz-Cobena, A., Guardia, G., & Vallejo, A. (2014). Meta-analysis of the effect of urease and nitrification inhibitors on crop productivity and nitrogen use efficiency. Agriculture, Ecosystems & Environment, 189, 136-144. doi:10.1016/j.agee.2014.03.036 es_ES
dc.description.references Battacharyya, D., Babgohari, M. Z., Rathor, P., & Prithiviraj, B. (2015). Seaweed extracts as biostimulants in horticulture. Scientia Horticulturae, 196, 39-48. doi:10.1016/j.scienta.2015.09.012 es_ES
dc.description.references Calvo, P., Nelson, L., & Kloepper, J. W. (2014). Agricultural uses of plant biostimulants. Plant and Soil, 383(1-2), 3-41. doi:10.1007/s11104-014-2131-8 es_ES
dc.description.references Canellas, L. P., Olivares, F. L., Aguiar, N. O., Jones, D. L., Nebbioso, A., Mazzei, P., & Piccolo, A. (2015). Humic and fulvic acids as biostimulants in horticulture. Scientia Horticulturae, 196, 15-27. doi:10.1016/j.scienta.2015.09.013 es_ES
dc.description.references Colla, G., Nardi, S., Cardarelli, M., Ertani, A., Lucini, L., Canaguier, R., & Rouphael, Y. (2015). Protein hydrolysates as biostimulants in horticulture. Scientia Horticulturae, 196, 28-38. doi:10.1016/j.scienta.2015.08.037 es_ES
dc.description.references Du Jardin, P. (2015). Plant biostimulants: Definition, concept, main categories and regulation. Scientia Horticulturae, 196, 3-14. doi:10.1016/j.scienta.2015.09.021 es_ES
dc.description.references Birrenkott, B. A., Craig, J. L., & McVey, G. R. (2005). A Leach Collection System to Track the Release of Nitrogen from Controlled-release Fertilizers in Container Ornamentals. HortScience, 40(6), 1887-1891. doi:10.21273/hortsci.40.6.1887 es_ES
dc.description.references Clark, M. J., & Zheng, Y. (2015). Species-specific fertilization can benefit container nursery crop production. Canadian Journal of Plant Science, 95(2), 251-262. doi:10.4141/cjps-2014-340 es_ES
dc.description.references Cox, D. A. (1993). Reducing nitrogen leaching‐losses from containerized plants: The effectiveness of controlled‐release fertilizers. Journal of Plant Nutrition, 16(3), 533-545. doi:10.1080/01904169309364552 es_ES
dc.description.references Agegnehu, G., Nelson, P. N., & Bird, M. I. (2016). The effects of biochar, compost and their mixture and nitrogen fertilizer on yield and nitrogen use efficiency of barley grown on a Nitisol in the highlands of Ethiopia. Science of The Total Environment, 569-570, 869-879. doi:10.1016/j.scitotenv.2016.05.033 es_ES
dc.description.references Huett, D. O., & Gogel, B. J. (2000). Longevities and nitrogen, phosphorus, and potassium release patterns of polymer‐coated controlled‐release fertilizers at 30°C and 40°C. Communications in Soil Science and Plant Analysis, 31(7-8), 959-973. doi:10.1080/00103620009370490 es_ES
dc.description.references YANG, L., WANG, L., LI, H., QIU, J., & LIU, H. (2014). Impacts of Fertilization Alternatives and Crop Straw Incorporation on N2O Emissions from a Spring Maize Field in Northeastern China. Journal of Integrative Agriculture, 13(4), 881-892. doi:10.1016/s2095-3119(13)60496-7 es_ES
dc.description.references Harrison, R., & Webb, J. (2001). A review of the effect of N fertilizer type on gaseous emissions. Advances in Agronomy, 65-108. doi:10.1016/s0065-2113(01)73005-2 es_ES
dc.description.references Obreza, T. A., Rouse, R. E., & Sherrod, J. B. (1999). Economics of Controlled-Release Fertilizer Use on Young Citrus Trees. Journal of Production Agriculture, 12(1), 69-73. doi:10.2134/jpa1999.0069 es_ES
dc.description.references García, C., Vallejo, A., Diéz, J. A., García, L., & Cartagena, M. C. (1997). Nitrogen use efficiency with the application of controlled release fertilizers coated with Kraft pine lignin. Soil Science and Plant Nutrition, 43(2), 443-449. doi:10.1080/00380768.1997.10414768 es_ES
dc.description.references Medina, L. C., Sartain, J. B., Obreza, T. A., Hall, W. L., & Thiex, N. J. (2014). Evaluation of a Soil Incubation Method to Characterize Nitrogen Release Patterns of Slow- and Controlled-Release Fertilizers. Journal of AOAC INTERNATIONAL, 97(3), 643-660. doi:10.5740/jaoacint.13-065 es_ES
dc.description.references Gasparin, E., Araujo, M. M., Saldanha, C. W., & Tolfo, C. V. (2015). <b>Controlled release fertilizer and container volumes in the production of Parapiptadenia rigida (Benth.) Brenan seedlings. Acta Scientiarum. Agronomy, 37(4), 473. doi:10.4025/actasciagron.v37i4.19528 es_ES
dc.description.references Haver, D. L., & Schuch, U. K. (1996). Production and Postproduction Performance of Two New Guinea Impatiens Cultivars Grown with Controlled-release Fertilizer and No Leaching. Journal of the American Society for Horticultural Science, 121(5), 820-825. doi:10.21273/jashs.121.5.820 es_ES
dc.description.references Jacobs, D. F., Salifu, K. F., & Seifert, J. R. (2005). Growth and nutritional response of hardwood seedlings to controlled-release fertilization at outplanting. Forest Ecology and Management, 214(1-3), 28-39. doi:10.1016/j.foreco.2005.03.053 es_ES
dc.description.references Kaplan, L., Tlustoš, P., Száková, J., & Najmanová, J. (2013). The influence of slow-release fertilizers on potted chrysanthemum growth and nutrient consumption &nbsp; Plant, Soil and Environment, 59(No. 9), 385-391. doi:10.17221/45/2013-pse es_ES
dc.description.references Kinoshita, T., Yano, T., Sugiura, M., & Nagasaki, Y. (2014). Effects of Controlled-Release Fertilizer on Leaf Area Index and Fruit Yield in High-Density Soilless Tomato Culture Using Low Node-Order Pinching. PLoS ONE, 9(11), e113074. doi:10.1371/journal.pone.0113074 es_ES
dc.description.references Kinoshita, T., Yamazaki, H., Inamoto, K., & Yamazaki, H. (2016). Analysis of yield components and dry matter production in a simplified soilless tomato culture system by using controlled-release fertilizers during summer–winter greenhouse production. Scientia Horticulturae, 202, 17-24. doi:10.1016/j.scienta.2016.02.019 es_ES
dc.description.references Oliet, J., Planelles, R., Segura, M. L., Artero, F., & Jacobs, D. F. (2004). Mineral nutrition and growth of containerized Pinus halepensis seedlings under controlled-release fertilizer. Scientia Horticulturae, 103(1), 113-129. doi:10.1016/j.scienta.2004.04.019 es_ES
dc.description.references Pack, J. E., Hutchinson, C. M., & Simonne, E. H. (2006). Evaluation of Controlled-Release Fertilizers for Northeast Florida Chip Potato Production. Journal of Plant Nutrition, 29(7), 1301-1313. doi:10.1080/01904160600767633 es_ES
dc.description.references Vishtal, A., & Kraslawski, A. (2011). Challenges in industrial applications of technical lignins. BioResources, 6(3), 3547-3568. doi:10.15376/biores.6.3.vishtal es_ES
dc.description.references Cacco, G., Attinà, E., Gelsomino, A., & Sidari, M. (2000). Effect of nitrate and humic substances of different molecular size on kinetic parameters of nitrate uptake in wheat seedlings. Journal of Plant Nutrition and Soil Science, 163(3), 313-320. doi:10.1002/1522-2624(200006)163:3<313::aid-jpln313>3.0.co;2-u es_ES
dc.description.references Nardi, S., Ertani, A., & Francioso, O. (2016). Soil-root cross-talking: The role of humic substances. Journal of Plant Nutrition and Soil Science, 180(1), 5-13. doi:10.1002/jpln.201600348 es_ES
dc.description.references Michalak, I., Górka, B., Wieczorek, P. P., Rój, E., Lipok, J., Łęska, B., … Chojnacka, K. (2016). Supercritical fluid extraction of algae enhances levels of biologically active compounds promoting plant growth. European Journal of Phycology, 51(3), 243-252. doi:10.1080/09670262.2015.1134813 es_ES
dc.description.references Lötze, E., & Hoffman, E. W. (2015). Nutrient composition and content of various biological active compounds of three South African-based commercial seaweed biostimulants. Journal of Applied Phycology, 28(2), 1379-1386. doi:10.1007/s10811-015-0644-z es_ES
dc.description.references Gaju, O., DeSilva, J., Carvalho, P., Hawkesford, M. J., Griffiths, S., Greenland, A., & Foulkes, M. J. (2016). Leaf photosynthesis and associations with grain yield, biomass and nitrogen-use efficiency in landraces, synthetic-derived lines and cultivars in wheat. Field Crops Research, 193, 1-15. doi:10.1016/j.fcr.2016.04.018 es_ES
dc.description.references Richards, R. A. (2000). Selectable traits to increase crop photosynthesis and yield of grain crops. Journal of Experimental Botany, 51(suppl_1), 447-458. doi:10.1093/jexbot/51.suppl_1.447 es_ES
dc.description.references Ji, Y., Liu, G., Ma, J., Xu, H., & Yagi, K. (2012). Effect of controlled-release fertilizer on nitrous oxide emission from a winter wheat field. Nutrient Cycling in Agroecosystems, 94(1), 111-122. doi:10.1007/s10705-012-9532-y es_ES
dc.description.references Grunes, D. L. (1959). Effect of Nitrogen on the Availability of Soil and Fertilizer Phosphorus to Plants. Advances in Agronomy, 369-396. doi:10.1016/s0065-2113(08)60127-3 es_ES
dc.description.references Zhao, B., Dong, S., Zhang, J., & Liu, P. (2013). Effects of Controlled-Release Fertiliser on Nitrogen Use Efficiency in Summer Maize. PLoS ONE, 8(8), e70569. doi:10.1371/journal.pone.0070569 es_ES
dc.description.references Dong, Y. J., He, M. ., Wang, Z. ., Chen, W. ., Hou, J., Qiu, X. ., & Zhang, J. . (2016). Effects of new coated release fertilizer on the growth of maize. Journal of soil science and plant nutrition, (ahead), 0-0. doi:10.4067/s0718-95162016005000046 es_ES
dc.description.references Mi, W., Yang, X., Wu, L., Ma, Q., Liu, Y., & Zhang, X. (2016). Evaluation of Nitrogen Fertilizer and Cultivation Methods for Agronomic Performance of Rice. Agronomy Journal, 108(5), 1907-1916. doi:10.2134/agronj2016.01.0038 es_ES
dc.description.references Roshanravan, B., Mahmoud Soltani, S., Mahdavi, F., Abdul Rashid, S., & Khanif Yusop, M. (2014). Preparation of encapsulated urea-kaolinite controlled release fertiliser and their effect on rice productivity. Chemical Speciation & Bioavailability, 26(4), 249-256. doi:10.3184/095422914x14146901352512 es_ES
dc.description.references Morikawa, C. K., Saigusa, M., Nakanishi, H., Nishizawa, N. K., Hasegawa, K., & Mori, S. (2004). Co-situsapplication of controlled-release fertilizers to alleviate iron chlorosis of paddy rice grown in calcareous soil. Soil Science and Plant Nutrition, 50(7), 1013-1021. doi:10.1080/00380768.2004.10408568 es_ES
dc.description.references Morikawa, C. K., Saigusa, M., Nishizawa, N. K., & Mori, S. (2008). Importance of contact between rice roots and co-situs applied fertilizer granules on iron absorption by paddy rice in a calcareous paddy soil. Soil Science and Plant Nutrition, 54(3), 467-472. doi:10.1111/j.1747-0765.2008.00254.x es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem