Zörb, C., Geilfus, C. ‐M., & Dietz, K. ‐J. (2018). Salinity and crop yield. Plant Biology, 21(S1), 31-38. doi:10.1111/plb.12884
Osakabe, Y., Osakabe, K., Shinozaki, K., & Tran, L.-S. P. (2014). Response of plants to water stress. Frontiers in Plant Science, 5. doi:10.3389/fpls.2014.00086
Fita, A., Rodríguez-Burruezo, A., Boscaiu, M., Prohens, J., & Vicente, O. (2015). Breeding and Domesticating Crops Adapted to Drought and Salinity: A New Paradigm for Increasing Food Production. Frontiers in Plant Science, 6. doi:10.3389/fpls.2015.00978
[+]
Zörb, C., Geilfus, C. ‐M., & Dietz, K. ‐J. (2018). Salinity and crop yield. Plant Biology, 21(S1), 31-38. doi:10.1111/plb.12884
Osakabe, Y., Osakabe, K., Shinozaki, K., & Tran, L.-S. P. (2014). Response of plants to water stress. Frontiers in Plant Science, 5. doi:10.3389/fpls.2014.00086
Fita, A., Rodríguez-Burruezo, A., Boscaiu, M., Prohens, J., & Vicente, O. (2015). Breeding and Domesticating Crops Adapted to Drought and Salinity: A New Paradigm for Increasing Food Production. Frontiers in Plant Science, 6. doi:10.3389/fpls.2015.00978
Shahid, S. A., Zaman, M., & Heng, L. (2018). Soil Salinity: Historical Perspectives and a World Overview of the Problem. Guideline for Salinity Assessment, Mitigation and Adaptation Using Nuclear and Related Techniques, 43-53. doi:10.1007/978-3-319-96190-3_2
Flowers, T. J., & Flowers, S. A. (2005). Why does salinity pose such a difficult problem for plant breeders? Agricultural Water Management, 78(1-2), 15-24. doi:10.1016/j.agwat.2005.04.015
Morton, J. F. (2007). The impact of climate change on smallholder and subsistence agriculture. Proceedings of the National Academy of Sciences, 104(50), 19680-19685. doi:10.1073/pnas.0701855104
Bellucci, E., Bitocchi, E., Rau, D., Rodriguez, M., Biagetti, E., Giardini, A., … Papa, R. (2013). Genomics of Origin, Domestication and Evolution of Phaseolus vulgaris. Genomics of Plant Genetic Resources, 483-507. doi:10.1007/978-94-007-7572-5_20
Delgado-Salinas, A., Bibler, R., & Lavin, M. (2006). Phylogeny of the Genus <I>Phaseolus</I> (Leguminosae): A Recent Diversification in an Ancient Landscape. Systematic Botany, 31(4), 779-791. doi:10.1600/036364406779695960
Broughton, W. J., Hernández, G., Blair, M., Beebe, S., Gepts, P., & Vanderleyden, J. (2003). Beans (Phaseolus spp.) – model food legumes. Plant and Soil, 252(1), 55-128. doi:10.1023/a:1024146710611
Rendón-Anaya, M., Montero-Vargas, J. M., Saburido-Álvarez, S., Vlasova, A., Capella-Gutierrez, S., Ordaz-Ortiz, J. J., … Herrera-Estrella, A. (2017). Genomic history of the origin and domestication of common bean unveils its closest sister species. Genome Biology, 18(1). doi:10.1186/s13059-017-1190-6
Berglund-Brücher, O., & Brücher, H. (1976). The south American wild bean (Phaseolus aborigineus Burk.) as ancestor of the common bean. Economic Botany, 30(3), 257-272. doi:10.1007/bf02909734
Arteaga, S., Yabor, L., Torres, J., Solbes, E., Muñoz, E., Díez, M. J., … Boscaiu, M. (2019). Morphological and Agronomic Characterization of Spanish Landraces of Phaseolus vulgaris L. Agriculture, 9(7), 149. doi:10.3390/agriculture9070149
Molina, J. C., Moda-Cirino, V., Fonseca Júnior, N. S., Faria, R. T., & Destro, D. (2001). Response of Common Bean Cultivars and Lines to Water Stress. Cropp Breeding and Applied Biotechnology, 1(4), 363-372. doi:10.13082/1984-7033.v01n04a05
Graham, P. H., & Ranalli, P. (1997). Common bean (Phaseolus vulgaris L.). Field Crops Research, 53(1-3), 131-146. doi:10.1016/s0378-4290(97)00112-3
Singh, S. P. (2007). Drought Resistance in the Race Durango Dry Bean Landraces and Cultivars. Agronomy Journal, 99(5), 1219-1225. doi:10.2134/agronj2006.0301
CUELLAR-ORTIZ, S. M., DE LA PAZ ARRIETA-MONTIEL, M., ACOSTA-GALLEGOS, J., & COVARRUBIAS, A. A. (2008). Relationship between carbohydrate partitioning and drought resistance in common bean. Plant, Cell & Environment, 31(10), 1399-1409. doi:10.1111/j.1365-3040.2008.01853.x
Maas, E. V., & Hoffman, G. J. (1977). Crop Salt Tolerance—Current Assessment. Journal of the Irrigation and Drainage Division, 103(2), 115-134. doi:10.1061/jrcea4.0001137
Zhumabayeva, B. A., Aytasheva, Z. G., Dzhangalina, E. D., Esen, A., … Lebedeva, L. P. (2019). Screening of domestic common bean cultivar for salt tolerance during in vitro cell cultivation. International Journal of Biology and Chemistry, 12(1), 94-102. doi:10.26577/ijbch-2019-1-i12
Fess, T. L., Kotcon, J. B., & Benedito, V. A. (2011). Crop Breeding for Low Input Agriculture: A Sustainable Response to Feed a Growing World Population. Sustainability, 3(10), 1742-1772. doi:10.3390/su3101742
Hurtado, M., Vilanova, S., Plazas, M., Gramazio, P., Andújar, I., Herraiz, F. J., … Prohens, J. (2014). Enhancing conservation and use of local vegetable landraces: the Almagro eggplant (Solanum melongena L.) case study. Genetic Resources and Crop Evolution, 61(4), 787-795. doi:10.1007/s10722-013-0073-2
Szabados, L., & Savouré, A. (2010). Proline: a multifunctional amino acid. Trends in Plant Science, 15(2), 89-97. doi:10.1016/j.tplants.2009.11.009
Verslues, P. E., & Sharma, S. (2010). Proline Metabolism and Its Implications for Plant-Environment Interaction. The Arabidopsis Book, 8, e0140. doi:10.1199/tab.0140
Kapuya, J. A., Barendse, G. W. M., & Linskens, H. F. (1985). WATER STRESS TOLERANCE AND PROLINE ACCUMULATION IN PHASEOLUS VULGARIS L. Acta Botanica Neerlandica, 34(3), 293-300. doi:10.1111/j.1438-8677.1985.tb01921.x
Misra, N., & Gupta, A. K. (2005). Effect of salt stress on proline metabolism in two high yielding genotypes of green gram. Plant Science, 169(2), 331-339. doi:10.1016/j.plantsci.2005.02.013
C醨denas-Avila, ML, Verde-Star, J., Maiti, R., Foroughbakhch-P, R., G醡ez-Gonz醠ez, H., … Morales-Vallarta, M. (2006). Variability in accumulation of free proline on in vitro calli of four bean (Phaseolus vulgaris L.) varieties exposed to salinity and induced moisture stress. Phyton, 75(1), 103-108. doi:10.32604/phyton.2006.75.103
WANG, Q. (2019). EFFECTS OF DROUGHT STRESS ON ENDOGENOUS HORMONES AND OSMOTIC REGULATORY SUBSTANCES OF COMMON BEAN (PHASEOLUS VULGARIS L.) AT SEEDLING STAGE. Applied Ecology and Environmental Research, 17(2), 4447-4457. doi:10.15666/aeer1702_44474457
Jiménez-Bremont, J. F., Becerra-Flora, A., Hernández-Lucero, E., Rodríguez-Kessler, M., Acosta-Gallegos, J. A., & Ramírez-Pimentel, J. G. (2006). Proline accumulation in two bean cultivars under salt stress and the effect of polyamines and ornithine. Biologia plantarum, 50(4), 763-766. doi:10.1007/s10535-006-0126-x
Al Hassan, M., Morosan, M., López-Gresa, M., Prohens, J., Vicente, O., & Boscaiu, M. (2016). Salinity-Induced Variation in Biochemical Markers Provides Insight into the Mechanisms of Salt Tolerance in Common (Phaseolus vulgaris) and Runner (P. coccineus) Beans. International Journal of Molecular Sciences, 17(9), 1582. doi:10.3390/ijms17091582
Morosan, M., Hassan, M. A., Naranjo, M. A., López-Gresa, M. P., Boscaiu, M., & Vicente, O. (2017). Comparative analysis of drought responses in Phaseolus vulgaris (common bean) and P. coccineus (runner bean) cultivars. The EuroBiotech Journal, 1(3), 247-252. doi:10.24190/issn2564-615x/2017/03.09
Bates, L. S., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39(1), 205-207. doi:10.1007/bf00018060
Arteaga, S., Al Hassan, M., Chaminda Bandara, W., Yabor, L., Llinares, J., Boscaiu, M., & Vicente, O. (2018). Screening for Salt Tolerance in Four Local Varieties of Phaseolus lunatus from Spain. Agriculture, 8(12), 201. doi:10.3390/agriculture8120201
Andrade, E. R., Ribeiro, V. N., Azevedo, C. V. G., Chiorato, A. F., Williams, T. C. R., & Carbonell, S. A. M. (2016). Biochemical indicators of drought tolerance in the common bean (Phaseolus vulgaris L.). Euphytica, 210(2), 277-289. doi:10.1007/s10681-016-1720-4
Bacha, H., Tekaya, M., Drine, S., Guasmi, F., Touil, L., Enneb, H., … Ferchichi, A. (2017). Impact of salt stress on morpho-physiological and biochemical parameters of Solanum lycopersicum cv. Microtom leaves. South African Journal of Botany, 108, 364-369. doi:10.1016/j.sajb.2016.08.018
Sen, A., Ozturk, I., Yaycili, O., & Alikamanoglu, S. (2017). Drought Tolerance in Irradiated Wheat Mutants Studied by Genetic and Biochemical Markers. Journal of Plant Growth Regulation, 36(3), 669-679. doi:10.1007/s00344-017-9668-8
Koźmińska, A., Wiszniewska, A., Hanus-Fajerska, E., Boscaiu, M., Al Hassan, M., Halecki, W., & Vicente, O. (2019). Identification of Salt and Drought Biochemical Stress Markers in Several Silene vulgaris Populations. Sustainability, 11(3), 800. doi:10.3390/su11030800
Verbruggen, N., & Hermans, C. (2008). Proline accumulation in plants: a review. Amino Acids, 35(4), 753-759. doi:10.1007/s00726-008-0061-6
Parvaiz, A., & Satyawati, S. (2008). Salt stress and phyto-biochemical responses of plants – a review. Plant, Soil and Environment, 54(No. 3), 89-99. doi:10.17221/2774-pse
Hayat, S., Hayat, Q., Alyemeni, M. N., Wani, A. S., Pichtel, J., & Ahmad, A. (2012). Role of proline under changing environments. Plant Signaling & Behavior, 7(11), 1456-1466. doi:10.4161/psb.21949
KAVI KISHOR, P. B., & SREENIVASULU, N. (2013). Is proline accumulationper secorrelated with stress tolerance or is proline homeostasis a more critical issue? Plant, Cell & Environment, 37(2), 300-311. doi:10.1111/pce.12157
Al Hassan, M., López-Gresa, M. del P., Boscaiu, M., & Vicente, O. (2016). Stress tolerance mechanisms in Juncus: responses to salinity and drought in three Juncus species adapted to different natural environments. Functional Plant Biology, 43(10), 949. doi:10.1071/fp16007
Al Hassan, M., Pacurar, A., López-Gresa, M. P., Donat-Torres, M. P., Llinares, J. V., Boscaiu, M., & Vicente, O. (2016). Effects of Salt Stress on Three Ecologically Distinct Plantago Species. PLOS ONE, 11(8), e0160236. doi:10.1371/journal.pone.0160236
Plazas, M., Nguyen, H. T., González-Orenga, S., Fita, A., Vicente, O., Prohens, J., & Boscaiu, M. (2019). Comparative analysis of the responses to water stress in eggplant (Solanum melongena) cultivars. Plant Physiology and Biochemistry, 143, 72-82. doi:10.1016/j.plaphy.2019.08.031
Chen, Z., Cuin, T. A., Zhou, M., Twomey, A., Naidu, B. P., & Shabala, S. (2007). Compatible solute accumulation and stress-mitigating effects in barley genotypes contrasting in their salt tolerance. Journal of Experimental Botany, 58(15-16), 4245-4255. doi:10.1093/jxb/erm284
Kozminska, A., Al Hassan, M., Hanus-Fajerska, E., Naranjo, M. A., Boscaiu, M., & Vicente, O. (2018). Comparative analysis of water deficit and salt tolerance mechanisms in Silene. South African Journal of Botany, 117, 193-206. doi:10.1016/j.sajb.2018.05.022
Rosales, M. A., Ocampo, E., Rodríguez-Valentín, R., Olvera-Carrillo, Y., Acosta-Gallegos, J., & Covarrubias, A. A. (2012). Physiological analysis of common bean (Phaseolus vulgaris L.) cultivars uncovers characteristics related to terminal drought resistance. Plant Physiology and Biochemistry, 56, 24-34. doi:10.1016/j.plaphy.2012.04.007
Sánchez, E., López-Lefebre, L. R., García, P. C., Rivero, R. M., Ruiz, J. M., & Romero, L. (2001). Proline metabolism in response to highest nitrogen dosages in green bean plants (Phaseolus vulgaris L. cv. Strike). Journal of Plant Physiology, 158(5), 593-598. doi:10.1078/0176-1617-00268
Mackay, C. E., Christopher Hall, J., Hofstra, G., & Fletcher, R. A. (1990). Uniconazole-induced changes in abscisic acid, total amino acids, and proline in Phaseolus vulgaris. Pesticide Biochemistry and Physiology, 37(1), 74-82. doi:10.1016/0048-3575(90)90110-n
Abdelhamid, M. T., Rady, M. M., Osman, A. S., & Abdalla, M. A. (2013). Exogenous application of proline alleviates salt-induced oxidative stress inPhaseolus vulgarisL. plants. The Journal of Horticultural Science and Biotechnology, 88(4), 439-446. doi:10.1080/14620316.2013.11512989
Gürel, F., Öztürk, Z. N., Uçarlı, C., & Rosellini, D. (2016). Barley Genes as Tools to Confer Abiotic Stress Tolerance in Crops. Frontiers in Plant Science, 7. doi:10.3389/fpls.2016.01137
Yoshida, J., Tomooka, N., Yee Khaing, T., Shantha, P. G. S., Naito, H., Matsuda, Y., & Ehara, H. (2019). Unique responses of three highly salt-tolerant wild Vigna species against salt stress. Plant Production Science, 23(1), 114-128. doi:10.1080/1343943x.2019.1698968
[-]