Mostrar el registro sencillo del ítem
dc.contributor.author | Arteaga, Sugenith | es_ES |
dc.contributor.author | Yabor, Lourdes | es_ES |
dc.contributor.author | Díez Niclós, Mª José Teresa De Jesús | es_ES |
dc.contributor.author | Prohens Tomás, Jaime | es_ES |
dc.contributor.author | Boscaiu, Monica | es_ES |
dc.contributor.author | Vicente, Oscar | es_ES |
dc.date.accessioned | 2021-05-14T03:32:16Z | |
dc.date.available | 2021-05-14T03:32:16Z | |
dc.date.issued | 2020-06 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/166353 | |
dc.description.abstract | [EN] The selection of stress-resistant cultivars, to be used in breeding programmes aimed at enhancing the drought and salt tolerance of our major crops, is an urgent need for agriculture in a climate change scenario. In the present study, the responses to water deficit and salt stress treatments, regarding growth inhibition and leaf proline (Pro) contents, were analysed in 47 Phaseolus vulgaris genotypes of di erent origins. A two-way analysis of variance (ANOVA), Pearson moment correlations and principal component analyses (PCAs) were performed on all measured traits, to assess the general responses to stress of the investigated genotypes. For most analysed growth variables and Pro, the e ects of cultivar, treatment and their interactions were highly significant (p < 0.001); the root morphological traits, stem diameter and the number of leaves were mostly due to uncontrolled variation, whereas the variation of fresh weight and water content of stems and leaves was clearly induced by stress. Under our experimental conditions, the average e ects of salt stress on plant growth were relatively weaker than those of water deficit. In both cases, however, growth inhibition was mostly reflected in the stress-induced reduction of fresh weight and water contents of stems and leaves. Pro, on the other hand, was the only variable showing a negative correlation with all growth parameters, but particularly with those of stems and leaves mentioned above, as indicated by the Pearson correlation coe cients and the loading plots of the PCAs. Therefore, in common beans, higher stress-induced accumulation of Pro is unequivocally associated with a stronger inhibition of growth; that is, with a higher sensitivity to stress of the corresponding cultivar. We propose the use of Pro as a suitable biochemical marker for simple, rapid, large-scale screenings of bean genotypes, to exclude the most sensitive, those accumulating higher Pro concentrations in response to water or salt stress treatments. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI | es_ES |
dc.relation.ispartof | Agronomy | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Abiotic stress biomarkers | es_ES |
dc.subject | Bean landraces | es_ES |
dc.subject | Osmolytes | es_ES |
dc.subject | Plant breeding | es_ES |
dc.subject | Salt stress | es_ES |
dc.subject | Salt stress tolerance | es_ES |
dc.subject | Water deficit | es_ES |
dc.subject | Water stress tolerance | es_ES |
dc.subject.classification | GENETICA | es_ES |
dc.subject.classification | BOTANICA | es_ES |
dc.subject.classification | BIOQUIMICA Y BIOLOGIA MOLECULAR | es_ES |
dc.title | The Use of Proline in Screening for Tolerance to Drought and Salinity in Common Bean (Phaseolus vulgaris L.) Genotypes | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/agronomy10060817 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ecosistemas Agroforestales - Departament d'Ecosistemes Agroforestals | es_ES |
dc.description.bibliographicCitation | Arteaga, S.; Yabor, L.; Díez Niclós, MJTDJ.; Prohens Tomás, J.; Boscaiu, M.; Vicente, O. (2020). The Use of Proline in Screening for Tolerance to Drought and Salinity in Common Bean (Phaseolus vulgaris L.) Genotypes. Agronomy. 10(6):1-16. https://doi.org/10.3390/agronomy10060817 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/agronomy10060817 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 16 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 10 | es_ES |
dc.description.issue | 6 | es_ES |
dc.identifier.eissn | 2073-4395 | es_ES |
dc.relation.pasarela | S\423140 | es_ES |
dc.description.references | Zörb, C., Geilfus, C. ‐M., & Dietz, K. ‐J. (2018). Salinity and crop yield. Plant Biology, 21(S1), 31-38. doi:10.1111/plb.12884 | es_ES |
dc.description.references | Osakabe, Y., Osakabe, K., Shinozaki, K., & Tran, L.-S. P. (2014). Response of plants to water stress. Frontiers in Plant Science, 5. doi:10.3389/fpls.2014.00086 | es_ES |
dc.description.references | Fita, A., Rodríguez-Burruezo, A., Boscaiu, M., Prohens, J., & Vicente, O. (2015). Breeding and Domesticating Crops Adapted to Drought and Salinity: A New Paradigm for Increasing Food Production. Frontiers in Plant Science, 6. doi:10.3389/fpls.2015.00978 | es_ES |
dc.description.references | Shahid, S. A., Zaman, M., & Heng, L. (2018). Soil Salinity: Historical Perspectives and a World Overview of the Problem. Guideline for Salinity Assessment, Mitigation and Adaptation Using Nuclear and Related Techniques, 43-53. doi:10.1007/978-3-319-96190-3_2 | es_ES |
dc.description.references | Flowers, T. J., & Flowers, S. A. (2005). Why does salinity pose such a difficult problem for plant breeders? Agricultural Water Management, 78(1-2), 15-24. doi:10.1016/j.agwat.2005.04.015 | es_ES |
dc.description.references | Morton, J. F. (2007). The impact of climate change on smallholder and subsistence agriculture. Proceedings of the National Academy of Sciences, 104(50), 19680-19685. doi:10.1073/pnas.0701855104 | es_ES |
dc.description.references | Bellucci, E., Bitocchi, E., Rau, D., Rodriguez, M., Biagetti, E., Giardini, A., … Papa, R. (2013). Genomics of Origin, Domestication and Evolution of Phaseolus vulgaris. Genomics of Plant Genetic Resources, 483-507. doi:10.1007/978-94-007-7572-5_20 | es_ES |
dc.description.references | Delgado-Salinas, A., Bibler, R., & Lavin, M. (2006). Phylogeny of the Genus <I>Phaseolus</I> (Leguminosae): A Recent Diversification in an Ancient Landscape. Systematic Botany, 31(4), 779-791. doi:10.1600/036364406779695960 | es_ES |
dc.description.references | Broughton, W. J., Hernández, G., Blair, M., Beebe, S., Gepts, P., & Vanderleyden, J. (2003). Beans (Phaseolus spp.) – model food legumes. Plant and Soil, 252(1), 55-128. doi:10.1023/a:1024146710611 | es_ES |
dc.description.references | Rendón-Anaya, M., Montero-Vargas, J. M., Saburido-Álvarez, S., Vlasova, A., Capella-Gutierrez, S., Ordaz-Ortiz, J. J., … Herrera-Estrella, A. (2017). Genomic history of the origin and domestication of common bean unveils its closest sister species. Genome Biology, 18(1). doi:10.1186/s13059-017-1190-6 | es_ES |
dc.description.references | Berglund-Brücher, O., & Brücher, H. (1976). The south American wild bean (Phaseolus aborigineus Burk.) as ancestor of the common bean. Economic Botany, 30(3), 257-272. doi:10.1007/bf02909734 | es_ES |
dc.description.references | Arteaga, S., Yabor, L., Torres, J., Solbes, E., Muñoz, E., Díez, M. J., … Boscaiu, M. (2019). Morphological and Agronomic Characterization of Spanish Landraces of Phaseolus vulgaris L. Agriculture, 9(7), 149. doi:10.3390/agriculture9070149 | es_ES |
dc.description.references | Molina, J. C., Moda-Cirino, V., Fonseca Júnior, N. S., Faria, R. T., & Destro, D. (2001). Response of Common Bean Cultivars and Lines to Water Stress. Cropp Breeding and Applied Biotechnology, 1(4), 363-372. doi:10.13082/1984-7033.v01n04a05 | es_ES |
dc.description.references | Graham, P. H., & Ranalli, P. (1997). Common bean (Phaseolus vulgaris L.). Field Crops Research, 53(1-3), 131-146. doi:10.1016/s0378-4290(97)00112-3 | es_ES |
dc.description.references | Singh, S. P. (2007). Drought Resistance in the Race Durango Dry Bean Landraces and Cultivars. Agronomy Journal, 99(5), 1219-1225. doi:10.2134/agronj2006.0301 | es_ES |
dc.description.references | CUELLAR-ORTIZ, S. M., DE LA PAZ ARRIETA-MONTIEL, M., ACOSTA-GALLEGOS, J., & COVARRUBIAS, A. A. (2008). Relationship between carbohydrate partitioning and drought resistance in common bean. Plant, Cell & Environment, 31(10), 1399-1409. doi:10.1111/j.1365-3040.2008.01853.x | es_ES |
dc.description.references | Maas, E. V., & Hoffman, G. J. (1977). Crop Salt Tolerance—Current Assessment. Journal of the Irrigation and Drainage Division, 103(2), 115-134. doi:10.1061/jrcea4.0001137 | es_ES |
dc.description.references | Zhumabayeva, B. A., Aytasheva, Z. G., Dzhangalina, E. D., Esen, A., … Lebedeva, L. P. (2019). Screening of domestic common bean cultivar for salt tolerance during in vitro cell cultivation. International Journal of Biology and Chemistry, 12(1), 94-102. doi:10.26577/ijbch-2019-1-i12 | es_ES |
dc.description.references | Fess, T. L., Kotcon, J. B., & Benedito, V. A. (2011). Crop Breeding for Low Input Agriculture: A Sustainable Response to Feed a Growing World Population. Sustainability, 3(10), 1742-1772. doi:10.3390/su3101742 | es_ES |
dc.description.references | Hurtado, M., Vilanova, S., Plazas, M., Gramazio, P., Andújar, I., Herraiz, F. J., … Prohens, J. (2014). Enhancing conservation and use of local vegetable landraces: the Almagro eggplant (Solanum melongena L.) case study. Genetic Resources and Crop Evolution, 61(4), 787-795. doi:10.1007/s10722-013-0073-2 | es_ES |
dc.description.references | Szabados, L., & Savouré, A. (2010). Proline: a multifunctional amino acid. Trends in Plant Science, 15(2), 89-97. doi:10.1016/j.tplants.2009.11.009 | es_ES |
dc.description.references | Verslues, P. E., & Sharma, S. (2010). Proline Metabolism and Its Implications for Plant-Environment Interaction. The Arabidopsis Book, 8, e0140. doi:10.1199/tab.0140 | es_ES |
dc.description.references | Kapuya, J. A., Barendse, G. W. M., & Linskens, H. F. (1985). WATER STRESS TOLERANCE AND PROLINE ACCUMULATION IN PHASEOLUS VULGARIS L. Acta Botanica Neerlandica, 34(3), 293-300. doi:10.1111/j.1438-8677.1985.tb01921.x | es_ES |
dc.description.references | Misra, N., & Gupta, A. K. (2005). Effect of salt stress on proline metabolism in two high yielding genotypes of green gram. Plant Science, 169(2), 331-339. doi:10.1016/j.plantsci.2005.02.013 | es_ES |
dc.description.references | C醨denas-Avila, ML, Verde-Star, J., Maiti, R., Foroughbakhch-P, R., G醡ez-Gonz醠ez, H., … Morales-Vallarta, M. (2006). Variability in accumulation of free proline on in vitro calli of four bean (Phaseolus vulgaris L.) varieties exposed to salinity and induced moisture stress. Phyton, 75(1), 103-108. doi:10.32604/phyton.2006.75.103 | es_ES |
dc.description.references | WANG, Q. (2019). EFFECTS OF DROUGHT STRESS ON ENDOGENOUS HORMONES AND OSMOTIC REGULATORY SUBSTANCES OF COMMON BEAN (PHASEOLUS VULGARIS L.) AT SEEDLING STAGE. Applied Ecology and Environmental Research, 17(2), 4447-4457. doi:10.15666/aeer1702_44474457 | es_ES |
dc.description.references | Jiménez-Bremont, J. F., Becerra-Flora, A., Hernández-Lucero, E., Rodríguez-Kessler, M., Acosta-Gallegos, J. A., & Ramírez-Pimentel, J. G. (2006). Proline accumulation in two bean cultivars under salt stress and the effect of polyamines and ornithine. Biologia plantarum, 50(4), 763-766. doi:10.1007/s10535-006-0126-x | es_ES |
dc.description.references | Al Hassan, M., Morosan, M., López-Gresa, M., Prohens, J., Vicente, O., & Boscaiu, M. (2016). Salinity-Induced Variation in Biochemical Markers Provides Insight into the Mechanisms of Salt Tolerance in Common (Phaseolus vulgaris) and Runner (P. coccineus) Beans. International Journal of Molecular Sciences, 17(9), 1582. doi:10.3390/ijms17091582 | es_ES |
dc.description.references | Morosan, M., Hassan, M. A., Naranjo, M. A., López-Gresa, M. P., Boscaiu, M., & Vicente, O. (2017). Comparative analysis of drought responses in Phaseolus vulgaris (common bean) and P. coccineus (runner bean) cultivars. The EuroBiotech Journal, 1(3), 247-252. doi:10.24190/issn2564-615x/2017/03.09 | es_ES |
dc.description.references | Bates, L. S., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39(1), 205-207. doi:10.1007/bf00018060 | es_ES |
dc.description.references | Arteaga, S., Al Hassan, M., Chaminda Bandara, W., Yabor, L., Llinares, J., Boscaiu, M., & Vicente, O. (2018). Screening for Salt Tolerance in Four Local Varieties of Phaseolus lunatus from Spain. Agriculture, 8(12), 201. doi:10.3390/agriculture8120201 | es_ES |
dc.description.references | Andrade, E. R., Ribeiro, V. N., Azevedo, C. V. G., Chiorato, A. F., Williams, T. C. R., & Carbonell, S. A. M. (2016). Biochemical indicators of drought tolerance in the common bean (Phaseolus vulgaris L.). Euphytica, 210(2), 277-289. doi:10.1007/s10681-016-1720-4 | es_ES |
dc.description.references | Bacha, H., Tekaya, M., Drine, S., Guasmi, F., Touil, L., Enneb, H., … Ferchichi, A. (2017). Impact of salt stress on morpho-physiological and biochemical parameters of Solanum lycopersicum cv. Microtom leaves. South African Journal of Botany, 108, 364-369. doi:10.1016/j.sajb.2016.08.018 | es_ES |
dc.description.references | Sen, A., Ozturk, I., Yaycili, O., & Alikamanoglu, S. (2017). Drought Tolerance in Irradiated Wheat Mutants Studied by Genetic and Biochemical Markers. Journal of Plant Growth Regulation, 36(3), 669-679. doi:10.1007/s00344-017-9668-8 | es_ES |
dc.description.references | Koźmińska, A., Wiszniewska, A., Hanus-Fajerska, E., Boscaiu, M., Al Hassan, M., Halecki, W., & Vicente, O. (2019). Identification of Salt and Drought Biochemical Stress Markers in Several Silene vulgaris Populations. Sustainability, 11(3), 800. doi:10.3390/su11030800 | es_ES |
dc.description.references | Verbruggen, N., & Hermans, C. (2008). Proline accumulation in plants: a review. Amino Acids, 35(4), 753-759. doi:10.1007/s00726-008-0061-6 | es_ES |
dc.description.references | Parvaiz, A., & Satyawati, S. (2008). Salt stress and phyto-biochemical responses of plants – a review. Plant, Soil and Environment, 54(No. 3), 89-99. doi:10.17221/2774-pse | es_ES |
dc.description.references | Hayat, S., Hayat, Q., Alyemeni, M. N., Wani, A. S., Pichtel, J., & Ahmad, A. (2012). Role of proline under changing environments. Plant Signaling & Behavior, 7(11), 1456-1466. doi:10.4161/psb.21949 | es_ES |
dc.description.references | KAVI KISHOR, P. B., & SREENIVASULU, N. (2013). Is proline accumulationper secorrelated with stress tolerance or is proline homeostasis a more critical issue? Plant, Cell & Environment, 37(2), 300-311. doi:10.1111/pce.12157 | es_ES |
dc.description.references | Al Hassan, M., López-Gresa, M. del P., Boscaiu, M., & Vicente, O. (2016). Stress tolerance mechanisms in Juncus: responses to salinity and drought in three Juncus species adapted to different natural environments. Functional Plant Biology, 43(10), 949. doi:10.1071/fp16007 | es_ES |
dc.description.references | Al Hassan, M., Pacurar, A., López-Gresa, M. P., Donat-Torres, M. P., Llinares, J. V., Boscaiu, M., & Vicente, O. (2016). Effects of Salt Stress on Three Ecologically Distinct Plantago Species. PLOS ONE, 11(8), e0160236. doi:10.1371/journal.pone.0160236 | es_ES |
dc.description.references | Plazas, M., Nguyen, H. T., González-Orenga, S., Fita, A., Vicente, O., Prohens, J., & Boscaiu, M. (2019). Comparative analysis of the responses to water stress in eggplant (Solanum melongena) cultivars. Plant Physiology and Biochemistry, 143, 72-82. doi:10.1016/j.plaphy.2019.08.031 | es_ES |
dc.description.references | Chen, Z., Cuin, T. A., Zhou, M., Twomey, A., Naidu, B. P., & Shabala, S. (2007). Compatible solute accumulation and stress-mitigating effects in barley genotypes contrasting in their salt tolerance. Journal of Experimental Botany, 58(15-16), 4245-4255. doi:10.1093/jxb/erm284 | es_ES |
dc.description.references | Kozminska, A., Al Hassan, M., Hanus-Fajerska, E., Naranjo, M. A., Boscaiu, M., & Vicente, O. (2018). Comparative analysis of water deficit and salt tolerance mechanisms in Silene. South African Journal of Botany, 117, 193-206. doi:10.1016/j.sajb.2018.05.022 | es_ES |
dc.description.references | Rosales, M. A., Ocampo, E., Rodríguez-Valentín, R., Olvera-Carrillo, Y., Acosta-Gallegos, J., & Covarrubias, A. A. (2012). Physiological analysis of common bean (Phaseolus vulgaris L.) cultivars uncovers characteristics related to terminal drought resistance. Plant Physiology and Biochemistry, 56, 24-34. doi:10.1016/j.plaphy.2012.04.007 | es_ES |
dc.description.references | Sánchez, E., López-Lefebre, L. R., García, P. C., Rivero, R. M., Ruiz, J. M., & Romero, L. (2001). Proline metabolism in response to highest nitrogen dosages in green bean plants (Phaseolus vulgaris L. cv. Strike). Journal of Plant Physiology, 158(5), 593-598. doi:10.1078/0176-1617-00268 | es_ES |
dc.description.references | Mackay, C. E., Christopher Hall, J., Hofstra, G., & Fletcher, R. A. (1990). Uniconazole-induced changes in abscisic acid, total amino acids, and proline in Phaseolus vulgaris. Pesticide Biochemistry and Physiology, 37(1), 74-82. doi:10.1016/0048-3575(90)90110-n | es_ES |
dc.description.references | Abdelhamid, M. T., Rady, M. M., Osman, A. S., & Abdalla, M. A. (2013). Exogenous application of proline alleviates salt-induced oxidative stress inPhaseolus vulgarisL. plants. The Journal of Horticultural Science and Biotechnology, 88(4), 439-446. doi:10.1080/14620316.2013.11512989 | es_ES |
dc.description.references | Gürel, F., Öztürk, Z. N., Uçarlı, C., & Rosellini, D. (2016). Barley Genes as Tools to Confer Abiotic Stress Tolerance in Crops. Frontiers in Plant Science, 7. doi:10.3389/fpls.2016.01137 | es_ES |
dc.description.references | Yoshida, J., Tomooka, N., Yee Khaing, T., Shantha, P. G. S., Naito, H., Matsuda, Y., & Ehara, H. (2019). Unique responses of three highly salt-tolerant wild Vigna species against salt stress. Plant Production Science, 23(1), 114-128. doi:10.1080/1343943x.2019.1698968 | es_ES |
dc.subject.ods | 02.- Poner fin al hambre, conseguir la seguridad alimentaria y una mejor nutrición, y promover la agricultura sostenible | es_ES |