- -

Enhancing visible-light photocatalytic activity for overall water splitting in UiO-66 by controlling metal node composition

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Enhancing visible-light photocatalytic activity for overall water splitting in UiO-66 by controlling metal node composition

Mostrar el registro completo del ítem

Melillo, A.; Cabrero-Antonino, M.; Navalón Oltra, S.; Alvaro Rodríguez, MM.; Ferrer Ribera, RB.; García Gómez, H. (2020). Enhancing visible-light photocatalytic activity for overall water splitting in UiO-66 by controlling metal node composition. Applied Catalysis B Environmental. 278:1-11. https://doi.org/10.1016/j.apcatb.2020.119345

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/166367

Ficheros en el ítem

Metadatos del ítem

Título: Enhancing visible-light photocatalytic activity for overall water splitting in UiO-66 by controlling metal node composition
Autor: Melillo, Arianna Cabrero-Antonino, Maria Navalón Oltra, Sergio Alvaro Rodríguez, Maria Mercedes Ferrer Ribera, Rosa Belén García Gómez, Hermenegildo
Entidad UPV: Universitat Politècnica de València. Departamento de Química - Departament de Química
Fecha difusión:
Resumen:
[EN] The photocatalytic activity of a series of five UiO-66 (M: Zr, Zr/Ti, Zr/Ce, Zr/Ce/Ti, Ce) materials for overall water splitting with generation of hydrogen and oxygen has been herein measured. The most efficient ...[+]
Palabras clave: Overall water splitting , Photocatalysis , Visible light photoresponse , UiO-66 , Trimetallic MOF
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Applied Catalysis B Environmental. (issn: 0926-3373 )
DOI: 10.1016/j.apcatb.2020.119345
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.apcatb.2020.119345
Código del Proyecto:
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2017%2F083/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-098237-B-C21/ES/HETEROUNIONES DE GRAFENO CON CONFIGURACION CONTROLADA. SINTESIS Y APLICACIONES COMO SOPORTE EN CATALISIS Y EN ELECTRODOS/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-099482-A-I00/ES/DESCOMPOSICION FOTOCATALITICA DEL AGUA ASISTIDA POR LUZ VISIBLE EMPLEANDO MATERIALES NOVEDOSOS Y MULTIFUNCIONALES UIO-66%2F67/
info:eu-repo/grantAgreement/GVA//AICO%2F2019%2F214/
Agradecimientos:
Financial support by the Spanish Ministry of Science and Innovation (Severo Ochoa and RTI2018-098237-CO21) and Generalitat Valenciana (Prometeo 2017/083) is gratefully acknowledged. S.N. thanks financial support by the ...[+]
Tipo: Artículo

References

Li, H., Eddaoudi, M., O’Keeffe, M., & Yaghi, O. M. (1999). Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature, 402(6759), 276-279. doi:10.1038/46248

Férey, G., Mellot-Draznieks, C., Serre, C., Millange, F., Dutour, J., Surblé, S., & Margiolaki, I. (2005). A Chromium Terephthalate-Based Solid with Unusually Large Pore Volumes and Surface Area. Science, 309(5743), 2040-2042. doi:10.1126/science.1116275

Furukawa, H., Cordova, K. E., O’Keeffe, M., & Yaghi, O. M. (2013). The Chemistry and Applications of Metal-Organic Frameworks. Science, 341(6149). doi:10.1126/science.1230444 [+]
Li, H., Eddaoudi, M., O’Keeffe, M., & Yaghi, O. M. (1999). Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature, 402(6759), 276-279. doi:10.1038/46248

Férey, G., Mellot-Draznieks, C., Serre, C., Millange, F., Dutour, J., Surblé, S., & Margiolaki, I. (2005). A Chromium Terephthalate-Based Solid with Unusually Large Pore Volumes and Surface Area. Science, 309(5743), 2040-2042. doi:10.1126/science.1116275

Furukawa, H., Cordova, K. E., O’Keeffe, M., & Yaghi, O. M. (2013). The Chemistry and Applications of Metal-Organic Frameworks. Science, 341(6149). doi:10.1126/science.1230444

Devic, T., & Serre, C. (2014). High valence 3p and transition metal based MOFs. Chem. Soc. Rev., 43(16), 6097-6115. doi:10.1039/c4cs00081a

Kitagawa, S., Kitaura, R., & Noro, S. (2004). Functional Porous Coordination Polymers. Angewandte Chemie International Edition, 43(18), 2334-2375. doi:10.1002/anie.200300610

Yaghi, O. M., O’Keeffe, M., Ockwig, N. W., Chae, H. K., Eddaoudi, M., & Kim, J. (2003). Reticular synthesis and the design of new materials. Nature, 423(6941), 705-714. doi:10.1038/nature01650

Zhou, H.-C., Long, J. R., & Yaghi, O. M. (2012). Introduction to Metal–Organic Frameworks. Chemical Reviews, 112(2), 673-674. doi:10.1021/cr300014x

Dhakshinamoorthy, A., Asiri, A. M., & García, H. (2016). Metal–Organic Framework (MOF) Compounds: Photocatalysts for Redox Reactions and Solar Fuel Production. Angewandte Chemie International Edition, 55(18), 5414-5445. doi:10.1002/anie.201505581

Li, X., Yu, J., Jaroniec, M., & Chen, X. (2019). Cocatalysts for Selective Photoreduction of CO2 into Solar Fuels. Chemical Reviews, 119(6), 3962-4179. doi:10.1021/acs.chemrev.8b00400

Cabrero-Antonino, M., Remiro-Buenamañana, S., Souto, M., García-Valdivia, A. A., Choquesillo-Lazarte, D., Navalón, S., … García, H. (2019). Design of cost-efficient and photocatalytically active Zn-based MOFs decorated with Cu2O nanoparticles for CO2methanation. Chemical Communications, 55(73), 10932-10935. doi:10.1039/c9cc04446a

Alkhatib, I. I., Garlisi, C., Pagliaro, M., Al-Ali, K., & Palmisano, G. (2020). Metal-organic frameworks for photocatalytic CO2 reduction under visible radiation: A review of strategies and applications. Catalysis Today, 340, 209-224. doi:10.1016/j.cattod.2018.09.032

Shi, Y., Yang, A.-F., Cao, C.-S., & Zhao, B. (2019). Applications of MOFs: Recent advances in photocatalytic hydrogen production from water. Coordination Chemistry Reviews, 390, 50-75. doi:10.1016/j.ccr.2019.03.012

Gomes Silva, C., Luz, I., Llabrés i Xamena, F. X., Corma, A., & García, H. (2010). Water Stable Zr-Benzenedicarboxylate Metal-Organic Frameworks as Photocatalysts for Hydrogen Generation. Chemistry - A European Journal, 16(36), 11133-11138. doi:10.1002/chem.200903526

Wang, S., & Wang, X. (2015). Multifunctional Metal-Organic Frameworks for Photocatalysis. Small, 11(26), 3097-3112. doi:10.1002/smll.201500084

Xu, H.-Q., Hu, J., Wang, D., Li, Z., Zhang, Q., Luo, Y., … Jiang, H.-L. (2015). Visible-Light Photoreduction of CO2 in a Metal–Organic Framework: Boosting Electron–Hole Separation via Electron Trap States. Journal of the American Chemical Society, 137(42), 13440-13443. doi:10.1021/jacs.5b08773

Zhao, S.-N., Wang, G., Poelman, D., & Van Der Voort, P. (2018). Metal Organic Frameworks Based Materials for Heterogeneous Photocatalysis. Molecules, 23(11), 2947. doi:10.3390/molecules23112947

Jamal Sisi, A., Fathinia, M., Khataee, A., & Orooji, Y. (2020). Systematic activation of potassium peroxydisulfate with ZIF-8 via sono-assisted catalytic process: Mechanism and ecotoxicological analysis. Journal of Molecular Liquids, 308, 113018. doi:10.1016/j.molliq.2020.113018

Nasalevich, M. A., Hendon, C. H., Santaclara, J. G., Svane, K., van der Linden, B., Veber, S. L., … Gascon, J. (2016). Electronic origins of photocatalytic activity in d0 metal organic frameworks. Scientific Reports, 6(1). doi:10.1038/srep23676

Nasalevich, M. A., van der Veen, M., Kapteijn, F., & Gascon, J. (2014). Metal–organic frameworks as heterogeneous photocatalysts: advantages and challenges. CrystEngComm, 16(23), 4919-4926. doi:10.1039/c4ce00032c

Santaclara, J. G., Kapteijn, F., Gascon, J., & van der Veen, M. A. (2017). Understanding metal–organic frameworks for photocatalytic solar fuel production. CrystEngComm, 19(29), 4118-4125. doi:10.1039/c7ce00006e

Santiago Portillo, A., Baldoví, H. G., García Fernandez, M. T., Navalón, S., Atienzar, P., Ferrer, B., … Li, Z. (2017). Ti as Mediator in the Photoinduced Electron Transfer of Mixed-Metal NH2–UiO-66(Zr/Ti): Transient Absorption Spectroscopy Study and Application in Photovoltaic Cell. The Journal of Physical Chemistry C, 121(12), 7015-7024. doi:10.1021/acs.jpcc.6b13068

Wang, L., Jin, P., Duan, S., She, H., Huang, J., & Wang, Q. (2019). In-situ incorporation of Copper(II) porphyrin functionalized zirconium MOF and TiO2 for efficient photocatalytic CO2 reduction. Science Bulletin, 64(13), 926-933. doi:10.1016/j.scib.2019.05.012

Qiu, J., Zhang, X., Feng, Y., Zhang, X., Wang, H., & Yao, J. (2018). Modified metal-organic frameworks as photocatalysts. Applied Catalysis B: Environmental, 231, 317-342. doi:10.1016/j.apcatb.2018.03.039

Shekofteh-Gohari, M., Habibi-Yangjeh, A., Abitorabi, M., & Rouhi, A. (2018). Magnetically separable nanocomposites based on ZnO and their applications in photocatalytic processes: A review. Critical Reviews in Environmental Science and Technology, 48(10-12), 806-857. doi:10.1080/10643389.2018.1487227

Salavati-Niasari, M. (2005). Synthesis and Characterization of Host (Nanodimensional Pores of Zeolite-Y)–Guest [Unsaturated 16-Membered Octaaza–macrocycle Manganese(II), Cobalt(II), Nickel(II), Copper(II), and Zinc(II) Complexes] Nanocomposite Materials. Chemistry Letters, 34(10), 1444-1445. doi:10.1246/cl.2005.1444

Pirhashemi, M., Habibi-Yangjeh, A., & Rahim Pouran, S. (2018). Review on the criteria anticipated for the fabrication of highly efficient ZnO-based visible-light-driven photocatalysts. Journal of Industrial and Engineering Chemistry, 62, 1-25. doi:10.1016/j.jiec.2018.01.012

Ghanbari, M., & Salavati-Niasari, M. (2018). Tl4CdI6 Nanostructures: Facile Sonochemical Synthesis and Photocatalytic Activity for Removal of Organic Dyes. Inorganic Chemistry, 57(18), 11443-11455. doi:10.1021/acs.inorgchem.8b01293

Mehdizadeh, P., Orooji, Y., Amiri, O., Salavati-Niasari, M., & Moayedi, H. (2020). Green synthesis using cherry and orange juice and characterization of TbFeO3 ceramic nanostructures and their application as photocatalysts under UV light for removal of organic dyes in water. Journal of Cleaner Production, 252, 119765. doi:10.1016/j.jclepro.2019.119765

Orooji, Y., Mohassel, R., Amiri, O., Sobhani, A., & Salavati-Niasari, M. (2020). Gd2ZnMnO6/ZnO nanocomposites: Green sol-gel auto-combustion synthesis, characterization and photocatalytic degradation of different dye pollutants in water. Journal of Alloys and Compounds, 835, 155240. doi:10.1016/j.jallcom.2020.155240

Orooji, Y., Alizadeh, A., Ghasali, E., Derakhshandeh, M. R., Alizadeh, M., Asl, M. S., & Ebadzadeh, T. (2019). Co-reinforcing of mullite-TiN-CNT composites with ZrB2 and TiB2 compounds. Ceramics International, 45(16), 20844-20854. doi:10.1016/j.ceramint.2019.07.072

Mohandes, F., Davar, F., & Salavati-Niasari, M. (2010). Magnesium oxide nanocrystals via thermal decomposition of magnesium oxalate. Journal of Physics and Chemistry of Solids, 71(12), 1623-1628. doi:10.1016/j.jpcs.2010.08.014

Salavati-Niasari, M., Loghman-Estarki, M. R., & Davar, F. (2008). Controllable synthesis of nanocrystalline CdS with different morphologies by hydrothermal process in the presence of thioglycolic acid. Chemical Engineering Journal, 145(2), 346-350. doi:10.1016/j.cej.2008.08.040

Salavati-Niasari, M. (2006). Ship-in-a-bottle synthesis, characterization and catalytic oxidation of styrene by host (nanopores of zeolite-Y)/guest ([bis(2-hydroxyanil)acetylacetonato manganese(III)]) nanocomposite materials (HGNM). Microporous and Mesoporous Materials, 95(1-3), 248-256. doi:10.1016/j.micromeso.2006.05.025

Sabet, M., Salavati-Niasari, M., & Amiri, O. (2014). Using different chemical methods for deposition of CdS on TiO2 surface and investigation of their influences on the dye-sensitized solar cell performance. Electrochimica Acta, 117, 504-520. doi:10.1016/j.electacta.2013.11.176

Wang, L., Duan, S., Jin, P., She, H., Huang, J., Lei, Z., … Wang, Q. (2018). Anchored Cu(II) tetra(4-carboxylphenyl)porphyrin to P25 (TiO2) for efficient photocatalytic ability in CO2 reduction. Applied Catalysis B: Environmental, 239, 599-608. doi:10.1016/j.apcatb.2018.08.007

Syzgantseva, M. A., Ireland, C. P., Ebrahim, F. M., Smit, B., & Syzgantseva, O. A. (2019). Metal Substitution as the Method of Modifying Electronic Structure of Metal–Organic Frameworks. Journal of the American Chemical Society, 141(15), 6271-6278. doi:10.1021/jacs.8b13667

Wu, X.-P., Gagliardi, L., & Truhlar, D. G. (2018). Cerium Metal–Organic Framework for Photocatalysis. Journal of the American Chemical Society, 140(25), 7904-7912. doi:10.1021/jacs.8b03613

Sun, D., Liu, W., Qiu, M., Zhang, Y., & Li, Z. (2015). Introduction of a mediator for enhancing photocatalytic performance via post-synthetic metal exchange in metal–organic frameworks (MOFs). Chemical Communications, 51(11), 2056-2059. doi:10.1039/c4cc09407g

Salavati-Niasari, M. (2005). Nanoscale microreactor-encapsulation of 18-membered decaaza macrocycle nickel(II) complexes. Inorganic Chemistry Communications, 8(2), 174-177. doi:10.1016/j.inoche.2004.11.004

Nasalevich, M. A., Goesten, M. G., Savenije, T. J., Kapteijn, F., & Gascon, J. (2013). Enhancing optical absorption of metal–organic frameworks for improved visible light photocatalysis. Chem. Commun., 49(90), 10575-10577. doi:10.1039/c3cc46398b

Salavati-Niasari, M., Sobhani, A., & Davar, F. (2010). Synthesis of star-shaped PbS nanocrystals using single-source precursor. Journal of Alloys and Compounds, 507(1), 77-83. doi:10.1016/j.jallcom.2010.06.062

Cavka, J. H., Jakobsen, S., Olsbye, U., Guillou, N., Lamberti, C., Bordiga, S., & Lillerud, K. P. (2008). A New Zirconium Inorganic Building Brick Forming Metal Organic Frameworks with Exceptional Stability. Journal of the American Chemical Society, 130(42), 13850-13851. doi:10.1021/ja8057953

Valenzano, L., Civalleri, B., Chavan, S., Bordiga, S., Nilsen, M. H., Jakobsen, S., … Lamberti, C. (2011). Disclosing the Complex Structure of UiO-66 Metal Organic Framework: A Synergic Combination of Experiment and Theory. Chemistry of Materials, 23(7), 1700-1718. doi:10.1021/cm1022882

Lee, Y., Kim, S., Kang, J. K., & Cohen, S. M. (2015). Photocatalytic CO2 reduction by a mixed metal (Zr/Ti), mixed ligand metal–organic framework under visible light irradiation. Chemical Communications, 51(26), 5735-5738. doi:10.1039/c5cc00686d

Nouar, F., Breeze, M. I., Campo, B. C., Vimont, A., Clet, G., Daturi, M., … Serre, C. (2015). Tuning the properties of the UiO-66 metal organic framework by Ce substitution. Chemical Communications, 51(77), 14458-14461. doi:10.1039/c5cc05072c

Hendrickx, K., Joos, J. J., De Vos, A., Poelman, D., Smet, P. F., Van Speybroeck, V., … Lejaeghere, K. (2018). Exploring Lanthanide Doping in UiO-66: A Combined Experimental and Computational Study of the Electronic Structure. Inorganic Chemistry, 57(9), 5463-5474. doi:10.1021/acs.inorgchem.8b00425

Frontera, P., Macario, A., Ferraro, M., & Antonucci, P. (2017). Supported Catalysts for CO2 Methanation: A Review. Catalysts, 7(12), 59. doi:10.3390/catal7020059

An, Y., Xu, B., Liu, Y., Wang, Z., Wang, P., Dai, Y., … Huang, B. (2017). Photocatalytic Overall Water Splitting over MIL-125(Ti) upon CoPi and Pt Co-catalyst Deposition. ChemistryOpen, 6(6), 701-705. doi:10.1002/open.201700100

Remiro-Buenamañana, S., Cabrero-Antonino, M., Martínez-Guanter, M., Álvaro, M., Navalón, S., & García, H. (2019). Influence of co-catalysts on the photocatalytic activity of MIL-125(Ti)-NH2 in the overall water splitting. Applied Catalysis B: Environmental, 254, 677-684. doi:10.1016/j.apcatb.2019.05.027

Gholamrezaei, S., & Salavati-Niasari, M. (2018). Sonochemical synthesis of SrMnO3 nanoparticles as an efficient and new catalyst for O2 evolution from water splitting reaction. Ultrasonics Sonochemistry, 40, 651-663. doi:10.1016/j.ultsonch.2017.08.012

Ghasemi, M., Khataee, A., Gholami, P., Soltani, R. D. C., Hassani, A., & Orooji, Y. (2020). In-situ electro-generation and activation of hydrogen peroxide using a CuFeNLDH-CNTs modified graphite cathode for degradation of cefazolin. Journal of Environmental Management, 267, 110629. doi:10.1016/j.jenvman.2020.110629

Lammert, M., Glißmann, C., & Stock, N. (2017). Tuning the stability of bimetallic Ce(iv)/Zr(iv)-based MOFs with UiO-66 and MOF-808 structures. Dalton Transactions, 46(8), 2425-2429. doi:10.1039/c7dt00259a

Santiago-Portillo, A., Navalón, S., Álvaro, M., & García, H. (2018). Generating and optimizing the catalytic activity in UiO-66 for aerobic oxidation of alkenes by post-synthetic exchange Ti atoms combined with ligand substitution. Journal of Catalysis, 365, 450-463. doi:10.1016/j.jcat.2018.07.032

Lomachenko, K. A., Jacobsen, J., Bugaev, A. L., Atzori, C., Bonino, F., Bordiga, S., … Lamberti, C. (2018). Exact Stoichiometry of CexZr6–x Cornerstones in Mixed-Metal UiO-66 Metal–Organic Frameworks Revealed by Extended X-ray Absorption Fine Structure Spectroscopy. Journal of the American Chemical Society, 140(50), 17379-17383. doi:10.1021/jacs.8b10343

Zhang, Y., Chen, H., Pan, Y., Zeng, X., Jiang, X., Long, Z., & Hou, X. (2019). Cerium-based UiO-66 metal–organic frameworks explored as efficient redox catalysts: titanium incorporation and generation of abundant oxygen vacancies. Chemical Communications, 55(93), 13959-13962. doi:10.1039/c9cc06562h

Kim, M., Cahill, J. F., Fei, H., Prather, K. A., & Cohen, S. M. (2012). Postsynthetic Ligand and Cation Exchange in Robust Metal–Organic Frameworks. Journal of the American Chemical Society, 134(43), 18082-18088. doi:10.1021/ja3079219

De Vos, A., Hendrickx, K., Van Der Voort, P., Van Speybroeck, V., & Lejaeghere, K. (2017). Missing Linkers: An Alternative Pathway to UiO-66 Electronic Structure Engineering. Chemistry of Materials, 29(7), 3006-3019. doi:10.1021/acs.chemmater.6b05444

Buragohain, A., & Biswas, S. (2016). Cerium-based azide- and nitro-functionalized UiO-66 frameworks as turn-on fluorescent probes for the sensing of hydrogen sulphide. CrystEngComm, 18(23), 4374-4381. doi:10.1039/c6ce00032k

Lammert, M., Wharmby, M. T., Smolders, S., Bueken, B., Lieb, A., Lomachenko, K. A., … Stock, N. (2015). Cerium-based metal organic frameworks with UiO-66 architecture: synthesis, properties and redox catalytic activity. Chemical Communications, 51(63), 12578-12581. doi:10.1039/c5cc02606g

Liu, Q., Cong, H., & Deng, H. (2016). Deciphering the Spatial Arrangement of Metals and Correlation to Reactivity in Multivariate Metal–Organic Frameworks. Journal of the American Chemical Society, 138(42), 13822-13825. doi:10.1021/jacs.6b08724

Trousselet, F., Archereau, A., Boutin, A., & Coudert, F.-X. (2016). Heterometallic Metal–Organic Frameworks of MOF-5 and UiO-66 Families: Insight from Computational Chemistry. The Journal of Physical Chemistry C, 120(43), 24885-24894. doi:10.1021/acs.jpcc.6b08594

Wang, Z., Li, C., & Domen, K. (2019). Recent developments in heterogeneous photocatalysts for solar-driven overall water splitting. Chemical Society Reviews, 48(7), 2109-2125. doi:10.1039/c8cs00542g

Alvaro, M., Carbonell, E., Ferrer, B., Llabrés i Xamena, F. X., & Garcia, H. (2007). Semiconductor Behavior of a Metal-Organic Framework (MOF). Chemistry - A European Journal, 13(18), 5106-5112. doi:10.1002/chem.200601003

De Miguel, M., Ragon, F., Devic, T., Serre, C., Horcajada, P., & García, H. (2012). Evidence of Photoinduced Charge Separation in the Metal-Organic Framework MIL-125(Ti)-NH2. ChemPhysChem, 13(16), 3651-3654. doi:10.1002/cphc.201200411

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem