- -

Enhancing visible-light photocatalytic activity for overall water splitting in UiO-66 by controlling metal node composition

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Enhancing visible-light photocatalytic activity for overall water splitting in UiO-66 by controlling metal node composition

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Melillo, Arianna es_ES
dc.contributor.author Cabrero-Antonino, Maria es_ES
dc.contributor.author Navalón Oltra, Sergio es_ES
dc.contributor.author Alvaro Rodríguez, Maria Mercedes es_ES
dc.contributor.author Ferrer Ribera, Rosa Belén es_ES
dc.contributor.author García Gómez, Hermenegildo es_ES
dc.date.accessioned 2021-05-14T12:41:03Z
dc.date.available 2021-05-14T12:41:03Z
dc.date.issued 2020-12-05 es_ES
dc.identifier.issn 0926-3373 es_ES
dc.identifier.uri http://hdl.handle.net/10251/166367
dc.description.abstract [EN] The photocatalytic activity of a series of five UiO-66 (M: Zr, Zr/Ti, Zr/Ce, Zr/Ce/Ti, Ce) materials for overall water splitting with generation of hydrogen and oxygen has been herein measured. The most efficient photocatalyst for the overall water splitting is the trimetallic MOF UiO-66(Zr/Ce/Ti) which achieves 230 mu mol.g(-1) of H-2 and 110 mu mol.g(-1) of O-2, upon UV light irradiation, and 210 mu mol.g(-1) of H-2 and 70 mu mol.g(-1) of O-2, under visible light irradiation. These productivity data indicate that a considerable percentage of its photocatalytic activity derives from the visible region of the spectrum (lambda > 450 nm). The photocatalytic activity of trimetallic UiO-66(Zr/Ce/Ti) was maintained upon reuse. Kinetics of the charge separated state monitored by transient absorption spectroscopy shows similar deactivation profiles for the five UiO-66 samples, suggesting that it is the charge separation efficiency the main factor responsible for the differences in the photocatalytic activity. The use of methanol as sacrificial agent during the photocatalytic experiments indicated that the high photocatalytic efficiency for overall water splitting in UiO-66(Zr/Ce/Ti) derives from the favorable kinetics of oxygen evolution. These results show the potential of multimetallic metal-organic frameworks as solar photocatalysts by tuning light absorption towards the visible region. es_ES
dc.description.sponsorship Financial support by the Spanish Ministry of Science and Innovation (Severo Ochoa and RTI2018-098237-CO21) and Generalitat Valenciana (Prometeo 2017/083) is gratefully acknowledged. S.N. thanks financial support by the Fundacion Ramon Areces (XVIII Concurso Nacional para la Adjudicacion de Ayudas a la Investigacion en Ciencias de la Vida y de la Materia, 2016), Ministerio de Ciencia, Innovacion y Universidades RTI2018-099482-A-I00 project and Generalitat Valenciana grupos de investigacion consolidables 2019 (ref: AICO/2019/214) project. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Applied Catalysis B Environmental es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Overall water splitting es_ES
dc.subject Photocatalysis es_ES
dc.subject Visible light photoresponse es_ES
dc.subject UiO-66 es_ES
dc.subject Trimetallic MOF es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Enhancing visible-light photocatalytic activity for overall water splitting in UiO-66 by controlling metal node composition es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.apcatb.2020.119345 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2017%2F083/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-098237-B-C21/ES/HETEROUNIONES DE GRAFENO CON CONFIGURACION CONTROLADA. SINTESIS Y APLICACIONES COMO SOPORTE EN CATALISIS Y EN ELECTRODOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-099482-A-I00/ES/DESCOMPOSICION FOTOCATALITICA DEL AGUA ASISTIDA POR LUZ VISIBLE EMPLEANDO MATERIALES NOVEDOSOS Y MULTIFUNCIONALES UIO-66%2F67/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//AICO%2F2019%2F214/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Melillo, A.; Cabrero-Antonino, M.; Navalón Oltra, S.; Alvaro Rodríguez, MM.; Ferrer Ribera, RB.; García Gómez, H. (2020). Enhancing visible-light photocatalytic activity for overall water splitting in UiO-66 by controlling metal node composition. Applied Catalysis B Environmental. 278:1-11. https://doi.org/10.1016/j.apcatb.2020.119345 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.apcatb.2020.119345 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 11 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 278 es_ES
dc.relation.pasarela S\419873 es_ES
dc.contributor.funder Fundación Ramón Areces es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Li, H., Eddaoudi, M., O’Keeffe, M., & Yaghi, O. M. (1999). Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature, 402(6759), 276-279. doi:10.1038/46248 es_ES
dc.description.references Férey, G., Mellot-Draznieks, C., Serre, C., Millange, F., Dutour, J., Surblé, S., & Margiolaki, I. (2005). A Chromium Terephthalate-Based Solid with Unusually Large Pore Volumes and Surface Area. Science, 309(5743), 2040-2042. doi:10.1126/science.1116275 es_ES
dc.description.references Furukawa, H., Cordova, K. E., O’Keeffe, M., & Yaghi, O. M. (2013). The Chemistry and Applications of Metal-Organic Frameworks. Science, 341(6149). doi:10.1126/science.1230444 es_ES
dc.description.references Devic, T., & Serre, C. (2014). High valence 3p and transition metal based MOFs. Chem. Soc. Rev., 43(16), 6097-6115. doi:10.1039/c4cs00081a es_ES
dc.description.references Kitagawa, S., Kitaura, R., & Noro, S. (2004). Functional Porous Coordination Polymers. Angewandte Chemie International Edition, 43(18), 2334-2375. doi:10.1002/anie.200300610 es_ES
dc.description.references Yaghi, O. M., O’Keeffe, M., Ockwig, N. W., Chae, H. K., Eddaoudi, M., & Kim, J. (2003). Reticular synthesis and the design of new materials. Nature, 423(6941), 705-714. doi:10.1038/nature01650 es_ES
dc.description.references Zhou, H.-C., Long, J. R., & Yaghi, O. M. (2012). Introduction to Metal–Organic Frameworks. Chemical Reviews, 112(2), 673-674. doi:10.1021/cr300014x es_ES
dc.description.references Dhakshinamoorthy, A., Asiri, A. M., & García, H. (2016). Metal–Organic Framework (MOF) Compounds: Photocatalysts for Redox Reactions and Solar Fuel Production. Angewandte Chemie International Edition, 55(18), 5414-5445. doi:10.1002/anie.201505581 es_ES
dc.description.references Li, X., Yu, J., Jaroniec, M., & Chen, X. (2019). Cocatalysts for Selective Photoreduction of CO2 into Solar Fuels. Chemical Reviews, 119(6), 3962-4179. doi:10.1021/acs.chemrev.8b00400 es_ES
dc.description.references Cabrero-Antonino, M., Remiro-Buenamañana, S., Souto, M., García-Valdivia, A. A., Choquesillo-Lazarte, D., Navalón, S., … García, H. (2019). Design of cost-efficient and photocatalytically active Zn-based MOFs decorated with Cu2O nanoparticles for CO2methanation. Chemical Communications, 55(73), 10932-10935. doi:10.1039/c9cc04446a es_ES
dc.description.references Alkhatib, I. I., Garlisi, C., Pagliaro, M., Al-Ali, K., & Palmisano, G. (2020). Metal-organic frameworks for photocatalytic CO2 reduction under visible radiation: A review of strategies and applications. Catalysis Today, 340, 209-224. doi:10.1016/j.cattod.2018.09.032 es_ES
dc.description.references Shi, Y., Yang, A.-F., Cao, C.-S., & Zhao, B. (2019). Applications of MOFs: Recent advances in photocatalytic hydrogen production from water. Coordination Chemistry Reviews, 390, 50-75. doi:10.1016/j.ccr.2019.03.012 es_ES
dc.description.references Gomes Silva, C., Luz, I., Llabrés i Xamena, F. X., Corma, A., & García, H. (2010). Water Stable Zr-Benzenedicarboxylate Metal-Organic Frameworks as Photocatalysts for Hydrogen Generation. Chemistry - A European Journal, 16(36), 11133-11138. doi:10.1002/chem.200903526 es_ES
dc.description.references Wang, S., & Wang, X. (2015). Multifunctional Metal-Organic Frameworks for Photocatalysis. Small, 11(26), 3097-3112. doi:10.1002/smll.201500084 es_ES
dc.description.references Xu, H.-Q., Hu, J., Wang, D., Li, Z., Zhang, Q., Luo, Y., … Jiang, H.-L. (2015). Visible-Light Photoreduction of CO2 in a Metal–Organic Framework: Boosting Electron–Hole Separation via Electron Trap States. Journal of the American Chemical Society, 137(42), 13440-13443. doi:10.1021/jacs.5b08773 es_ES
dc.description.references Zhao, S.-N., Wang, G., Poelman, D., & Van Der Voort, P. (2018). Metal Organic Frameworks Based Materials for Heterogeneous Photocatalysis. Molecules, 23(11), 2947. doi:10.3390/molecules23112947 es_ES
dc.description.references Jamal Sisi, A., Fathinia, M., Khataee, A., & Orooji, Y. (2020). Systematic activation of potassium peroxydisulfate with ZIF-8 via sono-assisted catalytic process: Mechanism and ecotoxicological analysis. Journal of Molecular Liquids, 308, 113018. doi:10.1016/j.molliq.2020.113018 es_ES
dc.description.references Nasalevich, M. A., Hendon, C. H., Santaclara, J. G., Svane, K., van der Linden, B., Veber, S. L., … Gascon, J. (2016). Electronic origins of photocatalytic activity in d0 metal organic frameworks. Scientific Reports, 6(1). doi:10.1038/srep23676 es_ES
dc.description.references Nasalevich, M. A., van der Veen, M., Kapteijn, F., & Gascon, J. (2014). Metal–organic frameworks as heterogeneous photocatalysts: advantages and challenges. CrystEngComm, 16(23), 4919-4926. doi:10.1039/c4ce00032c es_ES
dc.description.references Santaclara, J. G., Kapteijn, F., Gascon, J., & van der Veen, M. A. (2017). Understanding metal–organic frameworks for photocatalytic solar fuel production. CrystEngComm, 19(29), 4118-4125. doi:10.1039/c7ce00006e es_ES
dc.description.references Santiago Portillo, A., Baldoví, H. G., García Fernandez, M. T., Navalón, S., Atienzar, P., Ferrer, B., … Li, Z. (2017). Ti as Mediator in the Photoinduced Electron Transfer of Mixed-Metal NH2–UiO-66(Zr/Ti): Transient Absorption Spectroscopy Study and Application in Photovoltaic Cell. The Journal of Physical Chemistry C, 121(12), 7015-7024. doi:10.1021/acs.jpcc.6b13068 es_ES
dc.description.references Wang, L., Jin, P., Duan, S., She, H., Huang, J., & Wang, Q. (2019). In-situ incorporation of Copper(II) porphyrin functionalized zirconium MOF and TiO2 for efficient photocatalytic CO2 reduction. Science Bulletin, 64(13), 926-933. doi:10.1016/j.scib.2019.05.012 es_ES
dc.description.references Qiu, J., Zhang, X., Feng, Y., Zhang, X., Wang, H., & Yao, J. (2018). Modified metal-organic frameworks as photocatalysts. Applied Catalysis B: Environmental, 231, 317-342. doi:10.1016/j.apcatb.2018.03.039 es_ES
dc.description.references Shekofteh-Gohari, M., Habibi-Yangjeh, A., Abitorabi, M., & Rouhi, A. (2018). Magnetically separable nanocomposites based on ZnO and their applications in photocatalytic processes: A review. Critical Reviews in Environmental Science and Technology, 48(10-12), 806-857. doi:10.1080/10643389.2018.1487227 es_ES
dc.description.references Salavati-Niasari, M. (2005). Synthesis and Characterization of Host (Nanodimensional Pores of Zeolite-Y)–Guest [Unsaturated 16-Membered Octaaza–macrocycle Manganese(II), Cobalt(II), Nickel(II), Copper(II), and Zinc(II) Complexes] Nanocomposite Materials. Chemistry Letters, 34(10), 1444-1445. doi:10.1246/cl.2005.1444 es_ES
dc.description.references Pirhashemi, M., Habibi-Yangjeh, A., & Rahim Pouran, S. (2018). Review on the criteria anticipated for the fabrication of highly efficient ZnO-based visible-light-driven photocatalysts. Journal of Industrial and Engineering Chemistry, 62, 1-25. doi:10.1016/j.jiec.2018.01.012 es_ES
dc.description.references Ghanbari, M., & Salavati-Niasari, M. (2018). Tl4CdI6 Nanostructures: Facile Sonochemical Synthesis and Photocatalytic Activity for Removal of Organic Dyes. Inorganic Chemistry, 57(18), 11443-11455. doi:10.1021/acs.inorgchem.8b01293 es_ES
dc.description.references Mehdizadeh, P., Orooji, Y., Amiri, O., Salavati-Niasari, M., & Moayedi, H. (2020). Green synthesis using cherry and orange juice and characterization of TbFeO3 ceramic nanostructures and their application as photocatalysts under UV light for removal of organic dyes in water. Journal of Cleaner Production, 252, 119765. doi:10.1016/j.jclepro.2019.119765 es_ES
dc.description.references Orooji, Y., Mohassel, R., Amiri, O., Sobhani, A., & Salavati-Niasari, M. (2020). Gd2ZnMnO6/ZnO nanocomposites: Green sol-gel auto-combustion synthesis, characterization and photocatalytic degradation of different dye pollutants in water. Journal of Alloys and Compounds, 835, 155240. doi:10.1016/j.jallcom.2020.155240 es_ES
dc.description.references Orooji, Y., Alizadeh, A., Ghasali, E., Derakhshandeh, M. R., Alizadeh, M., Asl, M. S., & Ebadzadeh, T. (2019). Co-reinforcing of mullite-TiN-CNT composites with ZrB2 and TiB2 compounds. Ceramics International, 45(16), 20844-20854. doi:10.1016/j.ceramint.2019.07.072 es_ES
dc.description.references Mohandes, F., Davar, F., & Salavati-Niasari, M. (2010). Magnesium oxide nanocrystals via thermal decomposition of magnesium oxalate. Journal of Physics and Chemistry of Solids, 71(12), 1623-1628. doi:10.1016/j.jpcs.2010.08.014 es_ES
dc.description.references Salavati-Niasari, M., Loghman-Estarki, M. R., & Davar, F. (2008). Controllable synthesis of nanocrystalline CdS with different morphologies by hydrothermal process in the presence of thioglycolic acid. Chemical Engineering Journal, 145(2), 346-350. doi:10.1016/j.cej.2008.08.040 es_ES
dc.description.references Salavati-Niasari, M. (2006). Ship-in-a-bottle synthesis, characterization and catalytic oxidation of styrene by host (nanopores of zeolite-Y)/guest ([bis(2-hydroxyanil)acetylacetonato manganese(III)]) nanocomposite materials (HGNM). Microporous and Mesoporous Materials, 95(1-3), 248-256. doi:10.1016/j.micromeso.2006.05.025 es_ES
dc.description.references Sabet, M., Salavati-Niasari, M., & Amiri, O. (2014). Using different chemical methods for deposition of CdS on TiO2 surface and investigation of their influences on the dye-sensitized solar cell performance. Electrochimica Acta, 117, 504-520. doi:10.1016/j.electacta.2013.11.176 es_ES
dc.description.references Wang, L., Duan, S., Jin, P., She, H., Huang, J., Lei, Z., … Wang, Q. (2018). Anchored Cu(II) tetra(4-carboxylphenyl)porphyrin to P25 (TiO2) for efficient photocatalytic ability in CO2 reduction. Applied Catalysis B: Environmental, 239, 599-608. doi:10.1016/j.apcatb.2018.08.007 es_ES
dc.description.references Syzgantseva, M. A., Ireland, C. P., Ebrahim, F. M., Smit, B., & Syzgantseva, O. A. (2019). Metal Substitution as the Method of Modifying Electronic Structure of Metal–Organic Frameworks. Journal of the American Chemical Society, 141(15), 6271-6278. doi:10.1021/jacs.8b13667 es_ES
dc.description.references Wu, X.-P., Gagliardi, L., & Truhlar, D. G. (2018). Cerium Metal–Organic Framework for Photocatalysis. Journal of the American Chemical Society, 140(25), 7904-7912. doi:10.1021/jacs.8b03613 es_ES
dc.description.references Sun, D., Liu, W., Qiu, M., Zhang, Y., & Li, Z. (2015). Introduction of a mediator for enhancing photocatalytic performance via post-synthetic metal exchange in metal–organic frameworks (MOFs). Chemical Communications, 51(11), 2056-2059. doi:10.1039/c4cc09407g es_ES
dc.description.references Salavati-Niasari, M. (2005). Nanoscale microreactor-encapsulation of 18-membered decaaza macrocycle nickel(II) complexes. Inorganic Chemistry Communications, 8(2), 174-177. doi:10.1016/j.inoche.2004.11.004 es_ES
dc.description.references Nasalevich, M. A., Goesten, M. G., Savenije, T. J., Kapteijn, F., & Gascon, J. (2013). Enhancing optical absorption of metal–organic frameworks for improved visible light photocatalysis. Chem. Commun., 49(90), 10575-10577. doi:10.1039/c3cc46398b es_ES
dc.description.references Salavati-Niasari, M., Sobhani, A., & Davar, F. (2010). Synthesis of star-shaped PbS nanocrystals using single-source precursor. Journal of Alloys and Compounds, 507(1), 77-83. doi:10.1016/j.jallcom.2010.06.062 es_ES
dc.description.references Cavka, J. H., Jakobsen, S., Olsbye, U., Guillou, N., Lamberti, C., Bordiga, S., & Lillerud, K. P. (2008). A New Zirconium Inorganic Building Brick Forming Metal Organic Frameworks with Exceptional Stability. Journal of the American Chemical Society, 130(42), 13850-13851. doi:10.1021/ja8057953 es_ES
dc.description.references Valenzano, L., Civalleri, B., Chavan, S., Bordiga, S., Nilsen, M. H., Jakobsen, S., … Lamberti, C. (2011). Disclosing the Complex Structure of UiO-66 Metal Organic Framework: A Synergic Combination of Experiment and Theory. Chemistry of Materials, 23(7), 1700-1718. doi:10.1021/cm1022882 es_ES
dc.description.references Lee, Y., Kim, S., Kang, J. K., & Cohen, S. M. (2015). Photocatalytic CO2 reduction by a mixed metal (Zr/Ti), mixed ligand metal–organic framework under visible light irradiation. Chemical Communications, 51(26), 5735-5738. doi:10.1039/c5cc00686d es_ES
dc.description.references Nouar, F., Breeze, M. I., Campo, B. C., Vimont, A., Clet, G., Daturi, M., … Serre, C. (2015). Tuning the properties of the UiO-66 metal organic framework by Ce substitution. Chemical Communications, 51(77), 14458-14461. doi:10.1039/c5cc05072c es_ES
dc.description.references Hendrickx, K., Joos, J. J., De Vos, A., Poelman, D., Smet, P. F., Van Speybroeck, V., … Lejaeghere, K. (2018). Exploring Lanthanide Doping in UiO-66: A Combined Experimental and Computational Study of the Electronic Structure. Inorganic Chemistry, 57(9), 5463-5474. doi:10.1021/acs.inorgchem.8b00425 es_ES
dc.description.references Frontera, P., Macario, A., Ferraro, M., & Antonucci, P. (2017). Supported Catalysts for CO2 Methanation: A Review. Catalysts, 7(12), 59. doi:10.3390/catal7020059 es_ES
dc.description.references An, Y., Xu, B., Liu, Y., Wang, Z., Wang, P., Dai, Y., … Huang, B. (2017). Photocatalytic Overall Water Splitting over MIL-125(Ti) upon CoPi and Pt Co-catalyst Deposition. ChemistryOpen, 6(6), 701-705. doi:10.1002/open.201700100 es_ES
dc.description.references Remiro-Buenamañana, S., Cabrero-Antonino, M., Martínez-Guanter, M., Álvaro, M., Navalón, S., & García, H. (2019). Influence of co-catalysts on the photocatalytic activity of MIL-125(Ti)-NH2 in the overall water splitting. Applied Catalysis B: Environmental, 254, 677-684. doi:10.1016/j.apcatb.2019.05.027 es_ES
dc.description.references Gholamrezaei, S., & Salavati-Niasari, M. (2018). Sonochemical synthesis of SrMnO3 nanoparticles as an efficient and new catalyst for O2 evolution from water splitting reaction. Ultrasonics Sonochemistry, 40, 651-663. doi:10.1016/j.ultsonch.2017.08.012 es_ES
dc.description.references Ghasemi, M., Khataee, A., Gholami, P., Soltani, R. D. C., Hassani, A., & Orooji, Y. (2020). In-situ electro-generation and activation of hydrogen peroxide using a CuFeNLDH-CNTs modified graphite cathode for degradation of cefazolin. Journal of Environmental Management, 267, 110629. doi:10.1016/j.jenvman.2020.110629 es_ES
dc.description.references Lammert, M., Glißmann, C., & Stock, N. (2017). Tuning the stability of bimetallic Ce(iv)/Zr(iv)-based MOFs with UiO-66 and MOF-808 structures. Dalton Transactions, 46(8), 2425-2429. doi:10.1039/c7dt00259a es_ES
dc.description.references Santiago-Portillo, A., Navalón, S., Álvaro, M., & García, H. (2018). Generating and optimizing the catalytic activity in UiO-66 for aerobic oxidation of alkenes by post-synthetic exchange Ti atoms combined with ligand substitution. Journal of Catalysis, 365, 450-463. doi:10.1016/j.jcat.2018.07.032 es_ES
dc.description.references Lomachenko, K. A., Jacobsen, J., Bugaev, A. L., Atzori, C., Bonino, F., Bordiga, S., … Lamberti, C. (2018). Exact Stoichiometry of CexZr6–x Cornerstones in Mixed-Metal UiO-66 Metal–Organic Frameworks Revealed by Extended X-ray Absorption Fine Structure Spectroscopy. Journal of the American Chemical Society, 140(50), 17379-17383. doi:10.1021/jacs.8b10343 es_ES
dc.description.references Zhang, Y., Chen, H., Pan, Y., Zeng, X., Jiang, X., Long, Z., & Hou, X. (2019). Cerium-based UiO-66 metal–organic frameworks explored as efficient redox catalysts: titanium incorporation and generation of abundant oxygen vacancies. Chemical Communications, 55(93), 13959-13962. doi:10.1039/c9cc06562h es_ES
dc.description.references Kim, M., Cahill, J. F., Fei, H., Prather, K. A., & Cohen, S. M. (2012). Postsynthetic Ligand and Cation Exchange in Robust Metal–Organic Frameworks. Journal of the American Chemical Society, 134(43), 18082-18088. doi:10.1021/ja3079219 es_ES
dc.description.references De Vos, A., Hendrickx, K., Van Der Voort, P., Van Speybroeck, V., & Lejaeghere, K. (2017). Missing Linkers: An Alternative Pathway to UiO-66 Electronic Structure Engineering. Chemistry of Materials, 29(7), 3006-3019. doi:10.1021/acs.chemmater.6b05444 es_ES
dc.description.references Buragohain, A., & Biswas, S. (2016). Cerium-based azide- and nitro-functionalized UiO-66 frameworks as turn-on fluorescent probes for the sensing of hydrogen sulphide. CrystEngComm, 18(23), 4374-4381. doi:10.1039/c6ce00032k es_ES
dc.description.references Lammert, M., Wharmby, M. T., Smolders, S., Bueken, B., Lieb, A., Lomachenko, K. A., … Stock, N. (2015). Cerium-based metal organic frameworks with UiO-66 architecture: synthesis, properties and redox catalytic activity. Chemical Communications, 51(63), 12578-12581. doi:10.1039/c5cc02606g es_ES
dc.description.references Liu, Q., Cong, H., & Deng, H. (2016). Deciphering the Spatial Arrangement of Metals and Correlation to Reactivity in Multivariate Metal–Organic Frameworks. Journal of the American Chemical Society, 138(42), 13822-13825. doi:10.1021/jacs.6b08724 es_ES
dc.description.references Trousselet, F., Archereau, A., Boutin, A., & Coudert, F.-X. (2016). Heterometallic Metal–Organic Frameworks of MOF-5 and UiO-66 Families: Insight from Computational Chemistry. The Journal of Physical Chemistry C, 120(43), 24885-24894. doi:10.1021/acs.jpcc.6b08594 es_ES
dc.description.references Wang, Z., Li, C., & Domen, K. (2019). Recent developments in heterogeneous photocatalysts for solar-driven overall water splitting. Chemical Society Reviews, 48(7), 2109-2125. doi:10.1039/c8cs00542g es_ES
dc.description.references Alvaro, M., Carbonell, E., Ferrer, B., Llabrés i Xamena, F. X., & Garcia, H. (2007). Semiconductor Behavior of a Metal-Organic Framework (MOF). Chemistry - A European Journal, 13(18), 5106-5112. doi:10.1002/chem.200601003 es_ES
dc.description.references De Miguel, M., Ragon, F., Devic, T., Serre, C., Horcajada, P., & García, H. (2012). Evidence of Photoinduced Charge Separation in the Metal-Organic Framework MIL-125(Ti)-NH2. ChemPhysChem, 13(16), 3651-3654. doi:10.1002/cphc.201200411 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem