Mostrar el registro sencillo del ítem
dc.contributor.author | Melillo, Arianna | es_ES |
dc.contributor.author | Cabrero-Antonino, Maria | es_ES |
dc.contributor.author | Navalón Oltra, Sergio | es_ES |
dc.contributor.author | Alvaro Rodríguez, Maria Mercedes | es_ES |
dc.contributor.author | Ferrer Ribera, Rosa Belén | es_ES |
dc.contributor.author | García Gómez, Hermenegildo | es_ES |
dc.date.accessioned | 2021-05-14T12:41:03Z | |
dc.date.available | 2021-05-14T12:41:03Z | |
dc.date.issued | 2020-12-05 | es_ES |
dc.identifier.issn | 0926-3373 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/166367 | |
dc.description.abstract | [EN] The photocatalytic activity of a series of five UiO-66 (M: Zr, Zr/Ti, Zr/Ce, Zr/Ce/Ti, Ce) materials for overall water splitting with generation of hydrogen and oxygen has been herein measured. The most efficient photocatalyst for the overall water splitting is the trimetallic MOF UiO-66(Zr/Ce/Ti) which achieves 230 mu mol.g(-1) of H-2 and 110 mu mol.g(-1) of O-2, upon UV light irradiation, and 210 mu mol.g(-1) of H-2 and 70 mu mol.g(-1) of O-2, under visible light irradiation. These productivity data indicate that a considerable percentage of its photocatalytic activity derives from the visible region of the spectrum (lambda > 450 nm). The photocatalytic activity of trimetallic UiO-66(Zr/Ce/Ti) was maintained upon reuse. Kinetics of the charge separated state monitored by transient absorption spectroscopy shows similar deactivation profiles for the five UiO-66 samples, suggesting that it is the charge separation efficiency the main factor responsible for the differences in the photocatalytic activity. The use of methanol as sacrificial agent during the photocatalytic experiments indicated that the high photocatalytic efficiency for overall water splitting in UiO-66(Zr/Ce/Ti) derives from the favorable kinetics of oxygen evolution. These results show the potential of multimetallic metal-organic frameworks as solar photocatalysts by tuning light absorption towards the visible region. | es_ES |
dc.description.sponsorship | Financial support by the Spanish Ministry of Science and Innovation (Severo Ochoa and RTI2018-098237-CO21) and Generalitat Valenciana (Prometeo 2017/083) is gratefully acknowledged. S.N. thanks financial support by the Fundacion Ramon Areces (XVIII Concurso Nacional para la Adjudicacion de Ayudas a la Investigacion en Ciencias de la Vida y de la Materia, 2016), Ministerio de Ciencia, Innovacion y Universidades RTI2018-099482-A-I00 project and Generalitat Valenciana grupos de investigacion consolidables 2019 (ref: AICO/2019/214) project. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Applied Catalysis B Environmental | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Overall water splitting | es_ES |
dc.subject | Photocatalysis | es_ES |
dc.subject | Visible light photoresponse | es_ES |
dc.subject | UiO-66 | es_ES |
dc.subject | Trimetallic MOF | es_ES |
dc.subject.classification | QUIMICA ORGANICA | es_ES |
dc.title | Enhancing visible-light photocatalytic activity for overall water splitting in UiO-66 by controlling metal node composition | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.apcatb.2020.119345 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2017%2F083/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-098237-B-C21/ES/HETEROUNIONES DE GRAFENO CON CONFIGURACION CONTROLADA. SINTESIS Y APLICACIONES COMO SOPORTE EN CATALISIS Y EN ELECTRODOS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-099482-A-I00/ES/DESCOMPOSICION FOTOCATALITICA DEL AGUA ASISTIDA POR LUZ VISIBLE EMPLEANDO MATERIALES NOVEDOSOS Y MULTIFUNCIONALES UIO-66%2F67/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//AICO%2F2019%2F214/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.description.bibliographicCitation | Melillo, A.; Cabrero-Antonino, M.; Navalón Oltra, S.; Alvaro Rodríguez, MM.; Ferrer Ribera, RB.; García Gómez, H. (2020). Enhancing visible-light photocatalytic activity for overall water splitting in UiO-66 by controlling metal node composition. Applied Catalysis B Environmental. 278:1-11. https://doi.org/10.1016/j.apcatb.2020.119345 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.apcatb.2020.119345 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 11 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 278 | es_ES |
dc.relation.pasarela | S\419873 | es_ES |
dc.contributor.funder | Fundación Ramón Areces | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.description.references | Li, H., Eddaoudi, M., O’Keeffe, M., & Yaghi, O. M. (1999). Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature, 402(6759), 276-279. doi:10.1038/46248 | es_ES |
dc.description.references | Férey, G., Mellot-Draznieks, C., Serre, C., Millange, F., Dutour, J., Surblé, S., & Margiolaki, I. (2005). A Chromium Terephthalate-Based Solid with Unusually Large Pore Volumes and Surface Area. Science, 309(5743), 2040-2042. doi:10.1126/science.1116275 | es_ES |
dc.description.references | Furukawa, H., Cordova, K. E., O’Keeffe, M., & Yaghi, O. M. (2013). The Chemistry and Applications of Metal-Organic Frameworks. Science, 341(6149). doi:10.1126/science.1230444 | es_ES |
dc.description.references | Devic, T., & Serre, C. (2014). High valence 3p and transition metal based MOFs. Chem. Soc. Rev., 43(16), 6097-6115. doi:10.1039/c4cs00081a | es_ES |
dc.description.references | Kitagawa, S., Kitaura, R., & Noro, S. (2004). Functional Porous Coordination Polymers. Angewandte Chemie International Edition, 43(18), 2334-2375. doi:10.1002/anie.200300610 | es_ES |
dc.description.references | Yaghi, O. M., O’Keeffe, M., Ockwig, N. W., Chae, H. K., Eddaoudi, M., & Kim, J. (2003). Reticular synthesis and the design of new materials. Nature, 423(6941), 705-714. doi:10.1038/nature01650 | es_ES |
dc.description.references | Zhou, H.-C., Long, J. R., & Yaghi, O. M. (2012). Introduction to Metal–Organic Frameworks. Chemical Reviews, 112(2), 673-674. doi:10.1021/cr300014x | es_ES |
dc.description.references | Dhakshinamoorthy, A., Asiri, A. M., & García, H. (2016). Metal–Organic Framework (MOF) Compounds: Photocatalysts for Redox Reactions and Solar Fuel Production. Angewandte Chemie International Edition, 55(18), 5414-5445. doi:10.1002/anie.201505581 | es_ES |
dc.description.references | Li, X., Yu, J., Jaroniec, M., & Chen, X. (2019). Cocatalysts for Selective Photoreduction of CO2 into Solar Fuels. Chemical Reviews, 119(6), 3962-4179. doi:10.1021/acs.chemrev.8b00400 | es_ES |
dc.description.references | Cabrero-Antonino, M., Remiro-Buenamañana, S., Souto, M., García-Valdivia, A. A., Choquesillo-Lazarte, D., Navalón, S., … García, H. (2019). Design of cost-efficient and photocatalytically active Zn-based MOFs decorated with Cu2O nanoparticles for CO2methanation. Chemical Communications, 55(73), 10932-10935. doi:10.1039/c9cc04446a | es_ES |
dc.description.references | Alkhatib, I. I., Garlisi, C., Pagliaro, M., Al-Ali, K., & Palmisano, G. (2020). Metal-organic frameworks for photocatalytic CO2 reduction under visible radiation: A review of strategies and applications. Catalysis Today, 340, 209-224. doi:10.1016/j.cattod.2018.09.032 | es_ES |
dc.description.references | Shi, Y., Yang, A.-F., Cao, C.-S., & Zhao, B. (2019). Applications of MOFs: Recent advances in photocatalytic hydrogen production from water. Coordination Chemistry Reviews, 390, 50-75. doi:10.1016/j.ccr.2019.03.012 | es_ES |
dc.description.references | Gomes Silva, C., Luz, I., Llabrés i Xamena, F. X., Corma, A., & García, H. (2010). Water Stable Zr-Benzenedicarboxylate Metal-Organic Frameworks as Photocatalysts for Hydrogen Generation. Chemistry - A European Journal, 16(36), 11133-11138. doi:10.1002/chem.200903526 | es_ES |
dc.description.references | Wang, S., & Wang, X. (2015). Multifunctional Metal-Organic Frameworks for Photocatalysis. Small, 11(26), 3097-3112. doi:10.1002/smll.201500084 | es_ES |
dc.description.references | Xu, H.-Q., Hu, J., Wang, D., Li, Z., Zhang, Q., Luo, Y., … Jiang, H.-L. (2015). Visible-Light Photoreduction of CO2 in a Metal–Organic Framework: Boosting Electron–Hole Separation via Electron Trap States. Journal of the American Chemical Society, 137(42), 13440-13443. doi:10.1021/jacs.5b08773 | es_ES |
dc.description.references | Zhao, S.-N., Wang, G., Poelman, D., & Van Der Voort, P. (2018). Metal Organic Frameworks Based Materials for Heterogeneous Photocatalysis. Molecules, 23(11), 2947. doi:10.3390/molecules23112947 | es_ES |
dc.description.references | Jamal Sisi, A., Fathinia, M., Khataee, A., & Orooji, Y. (2020). Systematic activation of potassium peroxydisulfate with ZIF-8 via sono-assisted catalytic process: Mechanism and ecotoxicological analysis. Journal of Molecular Liquids, 308, 113018. doi:10.1016/j.molliq.2020.113018 | es_ES |
dc.description.references | Nasalevich, M. A., Hendon, C. H., Santaclara, J. G., Svane, K., van der Linden, B., Veber, S. L., … Gascon, J. (2016). Electronic origins of photocatalytic activity in d0 metal organic frameworks. Scientific Reports, 6(1). doi:10.1038/srep23676 | es_ES |
dc.description.references | Nasalevich, M. A., van der Veen, M., Kapteijn, F., & Gascon, J. (2014). Metal–organic frameworks as heterogeneous photocatalysts: advantages and challenges. CrystEngComm, 16(23), 4919-4926. doi:10.1039/c4ce00032c | es_ES |
dc.description.references | Santaclara, J. G., Kapteijn, F., Gascon, J., & van der Veen, M. A. (2017). Understanding metal–organic frameworks for photocatalytic solar fuel production. CrystEngComm, 19(29), 4118-4125. doi:10.1039/c7ce00006e | es_ES |
dc.description.references | Santiago Portillo, A., Baldoví, H. G., García Fernandez, M. T., Navalón, S., Atienzar, P., Ferrer, B., … Li, Z. (2017). Ti as Mediator in the Photoinduced Electron Transfer of Mixed-Metal NH2–UiO-66(Zr/Ti): Transient Absorption Spectroscopy Study and Application in Photovoltaic Cell. The Journal of Physical Chemistry C, 121(12), 7015-7024. doi:10.1021/acs.jpcc.6b13068 | es_ES |
dc.description.references | Wang, L., Jin, P., Duan, S., She, H., Huang, J., & Wang, Q. (2019). In-situ incorporation of Copper(II) porphyrin functionalized zirconium MOF and TiO2 for efficient photocatalytic CO2 reduction. Science Bulletin, 64(13), 926-933. doi:10.1016/j.scib.2019.05.012 | es_ES |
dc.description.references | Qiu, J., Zhang, X., Feng, Y., Zhang, X., Wang, H., & Yao, J. (2018). Modified metal-organic frameworks as photocatalysts. Applied Catalysis B: Environmental, 231, 317-342. doi:10.1016/j.apcatb.2018.03.039 | es_ES |
dc.description.references | Shekofteh-Gohari, M., Habibi-Yangjeh, A., Abitorabi, M., & Rouhi, A. (2018). Magnetically separable nanocomposites based on ZnO and their applications in photocatalytic processes: A review. Critical Reviews in Environmental Science and Technology, 48(10-12), 806-857. doi:10.1080/10643389.2018.1487227 | es_ES |
dc.description.references | Salavati-Niasari, M. (2005). Synthesis and Characterization of Host (Nanodimensional Pores of Zeolite-Y)–Guest [Unsaturated 16-Membered Octaaza–macrocycle Manganese(II), Cobalt(II), Nickel(II), Copper(II), and Zinc(II) Complexes] Nanocomposite Materials. Chemistry Letters, 34(10), 1444-1445. doi:10.1246/cl.2005.1444 | es_ES |
dc.description.references | Pirhashemi, M., Habibi-Yangjeh, A., & Rahim Pouran, S. (2018). Review on the criteria anticipated for the fabrication of highly efficient ZnO-based visible-light-driven photocatalysts. Journal of Industrial and Engineering Chemistry, 62, 1-25. doi:10.1016/j.jiec.2018.01.012 | es_ES |
dc.description.references | Ghanbari, M., & Salavati-Niasari, M. (2018). Tl4CdI6 Nanostructures: Facile Sonochemical Synthesis and Photocatalytic Activity for Removal of Organic Dyes. Inorganic Chemistry, 57(18), 11443-11455. doi:10.1021/acs.inorgchem.8b01293 | es_ES |
dc.description.references | Mehdizadeh, P., Orooji, Y., Amiri, O., Salavati-Niasari, M., & Moayedi, H. (2020). Green synthesis using cherry and orange juice and characterization of TbFeO3 ceramic nanostructures and their application as photocatalysts under UV light for removal of organic dyes in water. Journal of Cleaner Production, 252, 119765. doi:10.1016/j.jclepro.2019.119765 | es_ES |
dc.description.references | Orooji, Y., Mohassel, R., Amiri, O., Sobhani, A., & Salavati-Niasari, M. (2020). Gd2ZnMnO6/ZnO nanocomposites: Green sol-gel auto-combustion synthesis, characterization and photocatalytic degradation of different dye pollutants in water. Journal of Alloys and Compounds, 835, 155240. doi:10.1016/j.jallcom.2020.155240 | es_ES |
dc.description.references | Orooji, Y., Alizadeh, A., Ghasali, E., Derakhshandeh, M. R., Alizadeh, M., Asl, M. S., & Ebadzadeh, T. (2019). Co-reinforcing of mullite-TiN-CNT composites with ZrB2 and TiB2 compounds. Ceramics International, 45(16), 20844-20854. doi:10.1016/j.ceramint.2019.07.072 | es_ES |
dc.description.references | Mohandes, F., Davar, F., & Salavati-Niasari, M. (2010). Magnesium oxide nanocrystals via thermal decomposition of magnesium oxalate. Journal of Physics and Chemistry of Solids, 71(12), 1623-1628. doi:10.1016/j.jpcs.2010.08.014 | es_ES |
dc.description.references | Salavati-Niasari, M., Loghman-Estarki, M. R., & Davar, F. (2008). Controllable synthesis of nanocrystalline CdS with different morphologies by hydrothermal process in the presence of thioglycolic acid. Chemical Engineering Journal, 145(2), 346-350. doi:10.1016/j.cej.2008.08.040 | es_ES |
dc.description.references | Salavati-Niasari, M. (2006). Ship-in-a-bottle synthesis, characterization and catalytic oxidation of styrene by host (nanopores of zeolite-Y)/guest ([bis(2-hydroxyanil)acetylacetonato manganese(III)]) nanocomposite materials (HGNM). Microporous and Mesoporous Materials, 95(1-3), 248-256. doi:10.1016/j.micromeso.2006.05.025 | es_ES |
dc.description.references | Sabet, M., Salavati-Niasari, M., & Amiri, O. (2014). Using different chemical methods for deposition of CdS on TiO2 surface and investigation of their influences on the dye-sensitized solar cell performance. Electrochimica Acta, 117, 504-520. doi:10.1016/j.electacta.2013.11.176 | es_ES |
dc.description.references | Wang, L., Duan, S., Jin, P., She, H., Huang, J., Lei, Z., … Wang, Q. (2018). Anchored Cu(II) tetra(4-carboxylphenyl)porphyrin to P25 (TiO2) for efficient photocatalytic ability in CO2 reduction. Applied Catalysis B: Environmental, 239, 599-608. doi:10.1016/j.apcatb.2018.08.007 | es_ES |
dc.description.references | Syzgantseva, M. A., Ireland, C. P., Ebrahim, F. M., Smit, B., & Syzgantseva, O. A. (2019). Metal Substitution as the Method of Modifying Electronic Structure of Metal–Organic Frameworks. Journal of the American Chemical Society, 141(15), 6271-6278. doi:10.1021/jacs.8b13667 | es_ES |
dc.description.references | Wu, X.-P., Gagliardi, L., & Truhlar, D. G. (2018). Cerium Metal–Organic Framework for Photocatalysis. Journal of the American Chemical Society, 140(25), 7904-7912. doi:10.1021/jacs.8b03613 | es_ES |
dc.description.references | Sun, D., Liu, W., Qiu, M., Zhang, Y., & Li, Z. (2015). Introduction of a mediator for enhancing photocatalytic performance via post-synthetic metal exchange in metal–organic frameworks (MOFs). Chemical Communications, 51(11), 2056-2059. doi:10.1039/c4cc09407g | es_ES |
dc.description.references | Salavati-Niasari, M. (2005). Nanoscale microreactor-encapsulation of 18-membered decaaza macrocycle nickel(II) complexes. Inorganic Chemistry Communications, 8(2), 174-177. doi:10.1016/j.inoche.2004.11.004 | es_ES |
dc.description.references | Nasalevich, M. A., Goesten, M. G., Savenije, T. J., Kapteijn, F., & Gascon, J. (2013). Enhancing optical absorption of metal–organic frameworks for improved visible light photocatalysis. Chem. Commun., 49(90), 10575-10577. doi:10.1039/c3cc46398b | es_ES |
dc.description.references | Salavati-Niasari, M., Sobhani, A., & Davar, F. (2010). Synthesis of star-shaped PbS nanocrystals using single-source precursor. Journal of Alloys and Compounds, 507(1), 77-83. doi:10.1016/j.jallcom.2010.06.062 | es_ES |
dc.description.references | Cavka, J. H., Jakobsen, S., Olsbye, U., Guillou, N., Lamberti, C., Bordiga, S., & Lillerud, K. P. (2008). A New Zirconium Inorganic Building Brick Forming Metal Organic Frameworks with Exceptional Stability. Journal of the American Chemical Society, 130(42), 13850-13851. doi:10.1021/ja8057953 | es_ES |
dc.description.references | Valenzano, L., Civalleri, B., Chavan, S., Bordiga, S., Nilsen, M. H., Jakobsen, S., … Lamberti, C. (2011). Disclosing the Complex Structure of UiO-66 Metal Organic Framework: A Synergic Combination of Experiment and Theory. Chemistry of Materials, 23(7), 1700-1718. doi:10.1021/cm1022882 | es_ES |
dc.description.references | Lee, Y., Kim, S., Kang, J. K., & Cohen, S. M. (2015). Photocatalytic CO2 reduction by a mixed metal (Zr/Ti), mixed ligand metal–organic framework under visible light irradiation. Chemical Communications, 51(26), 5735-5738. doi:10.1039/c5cc00686d | es_ES |
dc.description.references | Nouar, F., Breeze, M. I., Campo, B. C., Vimont, A., Clet, G., Daturi, M., … Serre, C. (2015). Tuning the properties of the UiO-66 metal organic framework by Ce substitution. Chemical Communications, 51(77), 14458-14461. doi:10.1039/c5cc05072c | es_ES |
dc.description.references | Hendrickx, K., Joos, J. J., De Vos, A., Poelman, D., Smet, P. F., Van Speybroeck, V., … Lejaeghere, K. (2018). Exploring Lanthanide Doping in UiO-66: A Combined Experimental and Computational Study of the Electronic Structure. Inorganic Chemistry, 57(9), 5463-5474. doi:10.1021/acs.inorgchem.8b00425 | es_ES |
dc.description.references | Frontera, P., Macario, A., Ferraro, M., & Antonucci, P. (2017). Supported Catalysts for CO2 Methanation: A Review. Catalysts, 7(12), 59. doi:10.3390/catal7020059 | es_ES |
dc.description.references | An, Y., Xu, B., Liu, Y., Wang, Z., Wang, P., Dai, Y., … Huang, B. (2017). Photocatalytic Overall Water Splitting over MIL-125(Ti) upon CoPi and Pt Co-catalyst Deposition. ChemistryOpen, 6(6), 701-705. doi:10.1002/open.201700100 | es_ES |
dc.description.references | Remiro-Buenamañana, S., Cabrero-Antonino, M., Martínez-Guanter, M., Álvaro, M., Navalón, S., & García, H. (2019). Influence of co-catalysts on the photocatalytic activity of MIL-125(Ti)-NH2 in the overall water splitting. Applied Catalysis B: Environmental, 254, 677-684. doi:10.1016/j.apcatb.2019.05.027 | es_ES |
dc.description.references | Gholamrezaei, S., & Salavati-Niasari, M. (2018). Sonochemical synthesis of SrMnO3 nanoparticles as an efficient and new catalyst for O2 evolution from water splitting reaction. Ultrasonics Sonochemistry, 40, 651-663. doi:10.1016/j.ultsonch.2017.08.012 | es_ES |
dc.description.references | Ghasemi, M., Khataee, A., Gholami, P., Soltani, R. D. C., Hassani, A., & Orooji, Y. (2020). In-situ electro-generation and activation of hydrogen peroxide using a CuFeNLDH-CNTs modified graphite cathode for degradation of cefazolin. Journal of Environmental Management, 267, 110629. doi:10.1016/j.jenvman.2020.110629 | es_ES |
dc.description.references | Lammert, M., Glißmann, C., & Stock, N. (2017). Tuning the stability of bimetallic Ce(iv)/Zr(iv)-based MOFs with UiO-66 and MOF-808 structures. Dalton Transactions, 46(8), 2425-2429. doi:10.1039/c7dt00259a | es_ES |
dc.description.references | Santiago-Portillo, A., Navalón, S., Álvaro, M., & García, H. (2018). Generating and optimizing the catalytic activity in UiO-66 for aerobic oxidation of alkenes by post-synthetic exchange Ti atoms combined with ligand substitution. Journal of Catalysis, 365, 450-463. doi:10.1016/j.jcat.2018.07.032 | es_ES |
dc.description.references | Lomachenko, K. A., Jacobsen, J., Bugaev, A. L., Atzori, C., Bonino, F., Bordiga, S., … Lamberti, C. (2018). Exact Stoichiometry of CexZr6–x Cornerstones in Mixed-Metal UiO-66 Metal–Organic Frameworks Revealed by Extended X-ray Absorption Fine Structure Spectroscopy. Journal of the American Chemical Society, 140(50), 17379-17383. doi:10.1021/jacs.8b10343 | es_ES |
dc.description.references | Zhang, Y., Chen, H., Pan, Y., Zeng, X., Jiang, X., Long, Z., & Hou, X. (2019). Cerium-based UiO-66 metal–organic frameworks explored as efficient redox catalysts: titanium incorporation and generation of abundant oxygen vacancies. Chemical Communications, 55(93), 13959-13962. doi:10.1039/c9cc06562h | es_ES |
dc.description.references | Kim, M., Cahill, J. F., Fei, H., Prather, K. A., & Cohen, S. M. (2012). Postsynthetic Ligand and Cation Exchange in Robust Metal–Organic Frameworks. Journal of the American Chemical Society, 134(43), 18082-18088. doi:10.1021/ja3079219 | es_ES |
dc.description.references | De Vos, A., Hendrickx, K., Van Der Voort, P., Van Speybroeck, V., & Lejaeghere, K. (2017). Missing Linkers: An Alternative Pathway to UiO-66 Electronic Structure Engineering. Chemistry of Materials, 29(7), 3006-3019. doi:10.1021/acs.chemmater.6b05444 | es_ES |
dc.description.references | Buragohain, A., & Biswas, S. (2016). Cerium-based azide- and nitro-functionalized UiO-66 frameworks as turn-on fluorescent probes for the sensing of hydrogen sulphide. CrystEngComm, 18(23), 4374-4381. doi:10.1039/c6ce00032k | es_ES |
dc.description.references | Lammert, M., Wharmby, M. T., Smolders, S., Bueken, B., Lieb, A., Lomachenko, K. A., … Stock, N. (2015). Cerium-based metal organic frameworks with UiO-66 architecture: synthesis, properties and redox catalytic activity. Chemical Communications, 51(63), 12578-12581. doi:10.1039/c5cc02606g | es_ES |
dc.description.references | Liu, Q., Cong, H., & Deng, H. (2016). Deciphering the Spatial Arrangement of Metals and Correlation to Reactivity in Multivariate Metal–Organic Frameworks. Journal of the American Chemical Society, 138(42), 13822-13825. doi:10.1021/jacs.6b08724 | es_ES |
dc.description.references | Trousselet, F., Archereau, A., Boutin, A., & Coudert, F.-X. (2016). Heterometallic Metal–Organic Frameworks of MOF-5 and UiO-66 Families: Insight from Computational Chemistry. The Journal of Physical Chemistry C, 120(43), 24885-24894. doi:10.1021/acs.jpcc.6b08594 | es_ES |
dc.description.references | Wang, Z., Li, C., & Domen, K. (2019). Recent developments in heterogeneous photocatalysts for solar-driven overall water splitting. Chemical Society Reviews, 48(7), 2109-2125. doi:10.1039/c8cs00542g | es_ES |
dc.description.references | Alvaro, M., Carbonell, E., Ferrer, B., Llabrés i Xamena, F. X., & Garcia, H. (2007). Semiconductor Behavior of a Metal-Organic Framework (MOF). Chemistry - A European Journal, 13(18), 5106-5112. doi:10.1002/chem.200601003 | es_ES |
dc.description.references | De Miguel, M., Ragon, F., Devic, T., Serre, C., Horcajada, P., & García, H. (2012). Evidence of Photoinduced Charge Separation in the Metal-Organic Framework MIL-125(Ti)-NH2. ChemPhysChem, 13(16), 3651-3654. doi:10.1002/cphc.201200411 | es_ES |