Mostrar el registro sencillo del ítem
dc.contributor.author | Dare, Enock O. | es_ES |
dc.contributor.author | Vendrell-Criado, Victoria | es_ES |
dc.contributor.author | Jiménez Molero, María Consuelo | es_ES |
dc.contributor.author | Pérez-Ruiz, Raúl | es_ES |
dc.contributor.author | Díaz Díaz, David | es_ES |
dc.date.accessioned | 2021-05-14T12:41:08Z | |
dc.date.available | 2021-05-14T12:41:08Z | |
dc.date.issued | 2020-10-15 | es_ES |
dc.identifier.issn | 0947-6539 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/166369 | |
dc.description.abstract | [EN] The recent demand for fluorescent-labeled materials (FLMs) in forensic security concepts such as latent fingerprints (LFs) that encode information for anti-counterfeiting and encryption of confidential data makes necessary the development of building new and innovative materials. Here, novel FLMs based on polyhedral oligomeric silsesquioxanes (POSS) functionalized with fluorophores via "click" reactions have been successfully synthesized and fully characterized. A comprehensive study of their photophysical properties has displayed large Stokes's shift together with good photostability in all cases, fulfilling the fundamental requisites for any legible LF detection on various surfaces. The excellent performance of the hetero-bifunctional FLM in the visualization of LF is emphasized by their legibility, selectivity, sensitivity and temporal photostability. In this study, development mechanisms have been proposed and the overall concept constitute a novel approach for vis-a-vis forensic investigations to trace an individual's identity. | es_ES |
dc.description.sponsorship | Financial support by the Alexander von Humboldt Foundation (Georg Forster Research Fellowship to E.O. Dare), Generalitat Valenciana (CIDEGENT/2018/044), Universitat Regensburg and Universidad de La Laguna is gratefully acknowledged. Laboratory assistance from MSc A. Abramov and Dr. B. Maiti (Universitat Regensburg) is deeply acknowledged. D.D.D. thanks the DFG for the Heisenberg Professorship Award and the Spanish Ministry of Science, Innovation and Universities for the Senior Beatriz Galindo Award (Distinguished Researcher; BEAGAL18/00166). D.D.D. thanks NANOtec, INTech, Cabildo de Tenerife and ULL for laboratory facilities. Open access funding enabled and organized by Projekt DEAL. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | John Wiley & Sons | es_ES |
dc.relation.ispartof | Chemistry - A European Journal | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Click chemistry | es_ES |
dc.subject | Fingerprint identification | es_ES |
dc.subject | Fluorophores | es_ES |
dc.subject | Photostability | es_ES |
dc.subject | Silsesquioxanes | es_ES |
dc.subject.classification | QUIMICA ORGANICA | es_ES |
dc.subject.classification | QUIMICA ANALITICA | es_ES |
dc.title | Fluorescent-Labeled Octasilsesquioxane Nanohybrids as Potential Materials for Latent Fingerprinting Detection | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1002/chem.202001908 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MCIU//BEAGAL18%2F00166/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//CIDEGENT%2F2018%2F044/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.description.bibliographicCitation | Dare, EO.; Vendrell-Criado, V.; Jiménez Molero, MC.; Pérez-Ruiz, R.; Díaz Díaz, D. (2020). Fluorescent-Labeled Octasilsesquioxane Nanohybrids as Potential Materials for Latent Fingerprinting Detection. Chemistry - A European Journal. 26(58):13142-13146. https://doi.org/10.1002/chem.202001908 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1002/chem.202001908 | es_ES |
dc.description.upvformatpinicio | 13142 | es_ES |
dc.description.upvformatpfin | 13146 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 26 | es_ES |
dc.description.issue | 58 | es_ES |
dc.identifier.pmid | 32460420 | es_ES |
dc.identifier.pmcid | PMC7692944 | es_ES |
dc.relation.pasarela | S\413411 | es_ES |
dc.contributor.funder | Projekt DEAL | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Universität Regensburg | es_ES |
dc.contributor.funder | Universidad de La Laguna | es_ES |
dc.contributor.funder | Deutsche Forschungsgemeinschaft | es_ES |
dc.contributor.funder | Alexander von Humboldt Foundation | es_ES |
dc.contributor.funder | Ministerio de Ciencia, Innovación y Universidades | es_ES |
dc.description.references | Dai, Q., Duty, C. E., & Hu, M. Z. (2010). Semiconductor-Nanocrystals-Based White Light-Emitting Diodes. Small, 6(15), 1577-1588. doi:10.1002/smll.201000144 | es_ES |
dc.description.references | Sukhanova, A., Devy, J., Venteo, L., Kaplan, H., Artemyev, M., Oleinikov, V., … Nabiev, I. (2004). Biocompatible fluorescent nanocrystals for immunolabeling of membrane proteins and cells. Analytical Biochemistry, 324(1), 60-67. doi:10.1016/j.ab.2003.09.031 | es_ES |
dc.description.references | Ruedas-Rama, M. J., Walters, J. D., Orte, A., & Hall, E. A. H. (2012). Fluorescent nanoparticles for intracellular sensing: A review. Analytica Chimica Acta, 751, 1-23. doi:10.1016/j.aca.2012.09.025 | es_ES |
dc.description.references | Kumbhakar, P., Biswas, S., Pandey, P., Tiwary, C. S., & Kumbhakar, P. (2019). Tailoring of structural and photoluminescence emissions by Mn and Cu co-doping in 2D nanostructures of ZnS for the visualization of latent fingerprints and generation of white light. Nanoscale, 11(4), 2017-2026. doi:10.1039/c8nr09074b | es_ES |
dc.description.references | Song, Z., Li, Z., Lin, L., Zhang, Y., Lin, T., Chen, L., … Wang, X. (2017). Phenyl-doped graphitic carbon nitride: photoluminescence mechanism and latent fingerprint imaging. Nanoscale, 9(45), 17737-17742. doi:10.1039/c7nr04845a | es_ES |
dc.description.references | Bécue, A. (2016). Emerging fields in fingermark (meta)detection – a critical review. Analytical Methods, 8(45), 7983-8003. doi:10.1039/c6ay02496c | es_ES |
dc.description.references | Li, F., Wang, X., Xia, Z., Pan, C., & Liu, Q. (2017). Photoluminescence Tuning in Stretchable PDMS Film Grafted Doped Core/Multishell Quantum Dots for Anticounterfeiting. Advanced Functional Materials, 27(17), 1700051. doi:10.1002/adfm.201700051 | es_ES |
dc.description.references | Swati, G., Bishnoi, S., Singh, P., Lohia, N., Jaiswal, V. V., Dalai, M. K., & Haranath, D. (2018). Chemistry of extracting high-contrast invisible fingerprints from transparent and colored substrates using a novel phosphorescent label. Analytical Methods, 10(3), 308-313. doi:10.1039/c7ay02713c | es_ES |
dc.description.references | Li, K., Qin, W., Li, F., Zhao, X., Jiang, B., Wang, K., … Li, D. (2013). Nanoplasmonic Imaging of Latent Fingerprints and Identification of Cocaine. Angewandte Chemie International Edition, 52(44), 11542-11545. doi:10.1002/anie.201305980 | es_ES |
dc.description.references | Li, K., Qin, W., Li, F., Zhao, X., Jiang, B., Wang, K., … Li, D. (2013). Nanoplasmonic Imaging of Latent Fingerprints and Identification of Cocaine. Angewandte Chemie, 125(44), 11756-11759. doi:10.1002/ange.201305980 | es_ES |
dc.description.references | Sokolova, V., & Epple, M. (2011). Synthetic pathways to make nanoparticles fluorescent. Nanoscale, 3(5), 1957. doi:10.1039/c1nr00002k | es_ES |
dc.description.references | Vollrath, A., Schubert, S., & Schubert, U. S. (2013). Fluorescence imaging of cancer tissue based on metal-free polymeric nanoparticles – a review. Journal of Materials Chemistry B, 1(15), 1994. doi:10.1039/c3tb20089b | es_ES |
dc.description.references | Maltoni, D., Maio, D., Jain, A. K., & Prabhakar, S. (2009). Handbook of Fingerprint Recognition. doi:10.1007/978-1-84882-254-2 | es_ES |
dc.description.references | Hazarika, P., & Russell, D. A. (2012). Advances in Fingerprint Analysis. Angewandte Chemie International Edition, 51(15), 3524-3531. doi:10.1002/anie.201104313 | es_ES |
dc.description.references | Hazarika, P., & Russell, D. A. (2012). Fortschritte in der Fingerabdruckanalyse. Angewandte Chemie, 124(15), 3582-3589. doi:10.1002/ange.201104313 | es_ES |
dc.description.references | Wang, M., Li, M., Yu, A., Zhu, Y., Yang, M., & Mao, C. (2017). Fluorescent Nanomaterials for the Development of Latent Fingerprints in Forensic Sciences. Advanced Functional Materials, 27(14), 1606243. doi:10.1002/adfm.201606243 | es_ES |
dc.description.references | Cordes, D. B., Lickiss, P. D., & Rataboul, F. (2010). Recent Developments in the Chemistry of Cubic Polyhedral Oligosilsesquioxanes. Chemical Reviews, 110(4), 2081-2173. doi:10.1021/cr900201r | es_ES |
dc.description.references | Lin, M., Luo, C., Xing, G., Chen, L., & Ling, Q. (2017). Influence of polyhedral oligomeric silsesquioxanes (POSS) on the luminescence properties of non-conjugated copolymers based on iridium complex and carbazole units. RSC Advances, 7(63), 39512-39522. doi:10.1039/c7ra07316j | es_ES |
dc.description.references | Dong, F., Lu, L., & Ha, C. (2019). Silsesquioxane‐Containing Hybrid Nanomaterials: Fascinating Platforms for Advanced Applications. Macromolecular Chemistry and Physics, 220(3), 1800324. doi:10.1002/macp.201800324 | es_ES |
dc.description.references | Du, Y., & Liu, H. (2020). Cage-like silsesquioxanes-based hybrid materials. Dalton Transactions, 49(17), 5396-5405. doi:10.1039/d0dt00587h | es_ES |
dc.description.references | Shi, H., Yang, J., You, M., Li, Z., & He, C. (2020). Polyhedral Oligomeric Silsesquioxanes (POSS)-Based Hybrid Soft Gels: Molecular Design, Material Advantages, and Emerging Applications. ACS Materials Letters, 2(4), 296-316. doi:10.1021/acsmaterialslett.9b00491 | es_ES |
dc.description.references | Du, F., Wang, H., Bao, Y., Liu, B., Zheng, H., & Bai, R. (2011). Conjugated coordination polymers based on 8-hydroxyquinoline ligands: impact of polyhedral oligomeric silsesquioxanes on solubility and luminescence. Journal of Materials Chemistry, 21(29), 10859. doi:10.1039/c1jm11389e | es_ES |
dc.description.references | Pérez-Ojeda, M. E., Trastoy, B., Rol, Á., Chiara, M. D., García-Moreno, I., & Chiara, J. L. (2013). Controlled Click-Assembly of Well-Defined Hetero-Bifunctional Cubic Silsesquioxanes and Their Application in Targeted Bioimaging. Chemistry - A European Journal, 19(21), 6630-6640. doi:10.1002/chem.201300339 | es_ES |
dc.description.references | Li, Y., Dong, X.-H., Zou, Y., Wang, Z., Yue, K., Huang, M., … Cheng, S. Z. D. (2017). Polyhedral oligomeric silsesquioxane meets «click» chemistry: Rational design and facile preparation of functional hybrid materials. Polymer, 125, 303-329. doi:10.1016/j.polymer.2017.08.008 | es_ES |
dc.description.references | Hendan, B. J., & Marsmann, H. C. (1994). Semipräparative Trennung gemischt substituierter Octa-(organylsilsesquioxane) mittels Normal-Phase-HPLC und ihre 29Si-NMR-spektroskopische Unters. Journal of Organometallic Chemistry, 483(1-2), 33-38. doi:10.1016/0022-328x(94)87144-2 | es_ES |
dc.description.references | Kolb, H. C., Finn, M. G., & Sharpless, K. B. (2001). Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angewandte Chemie International Edition, 40(11), 2004-2021. doi:10.1002/1521-3773(20010601)40:11<2004::aid-anie2004>3.0.co;2-5 | es_ES |
dc.description.references | Kolb, H. C., Finn, M. G., & Sharpless, K. B. (2001). Click-Chemie: diverse chemische Funktionalität mit einer Handvoll guter Reaktionen. Angewandte Chemie, 113(11), 2056-2075. doi:10.1002/1521-3757(20010601)113:11<2056::aid-ange2056>3.0.co;2-w | es_ES |
dc.description.references | Pérez-Ojeda, M. E., Trastoy, B., López-Arbeloa, Í., Bañuelos, J., Costela, Á., García-Moreno, I., & Chiara, J. L. (2011). Click Assembly of Dye-Functionalized Octasilsesquioxanes for Highly Efficient and Photostable Photonic Systems. Chemistry - A European Journal, 17(47), 13258-13268. doi:10.1002/chem.201100512 | es_ES |
dc.description.references | Han, J., Zheng, Y., Zheng, S., Li, S., Hu, T., Tang, A., & Gao, C. (2014). Water soluble octa-functionalized POSS: all-click chemistry synthesis and efficient host–guest encapsulation. Chem. Commun., 50(63), 8712-8714. doi:10.1039/c4cc01956c | es_ES |
dc.description.references | Dudziec, B., Żak, P., & Marciniec, B. (2019). Synthetic Routes to Silsesquioxane-Based Systems as Photoactive Materials and Their Precursors. Polymers, 11(3), 504. doi:10.3390/polym11030504 | es_ES |
dc.description.references | Fabritz, S., Heyl, D., Bagutski, V., Empting, M., Rikowski, E., Frauendorf, H., … Kolmar, H. (2010). Towards click bioconjugations on cube-octameric silsesquioxane scaffolds. Organic & Biomolecular Chemistry, 8(9), 2212. doi:10.1039/b923393h | es_ES |
dc.description.references | Hartmann-Thompson, C., Keeley, D. L., Pollock, K. M., Dvornic, P. R., Keinath, S. E., Dantus, M., … LeCaptain, D. J. (2008). One- and Two-Photon Fluorescent Polyhedral Oligosilsesquioxane (POSS) Nanosensor Arrays for the Remote Detection of Analytes in Clouds, in Solution, and on Surfaces. Chemistry of Materials, 20(8), 2829-2838. doi:10.1021/cm703641s | es_ES |
dc.description.references | Jing, L., Liang, C., Shi, X., Ye, S., & Xian, Y. (2012). Fluorescent probe for Fe(iii) based on pyrene grafted multiwalled carbon nanotubes by click reaction. The Analyst, 137(7), 1718. doi:10.1039/c2an16152d | es_ES |
dc.description.references | Bolletta, F., Fabbri, D., Lombardo, M., Prodi, L., Trombini, C., & Zaccheroni, N. (1996). Synthesis and Photophysical Properties of Fluorescent Derivatives of Methylmercury. Organometallics, 15(9), 2415-2417. doi:10.1021/om950793b | es_ES |
dc.description.references | Lizzul-Jurse, A., Bailly, L., Hubert-Roux, M., Afonso, C., Renard, P.-Y., & Sabot, C. (2016). Readily functionalizable phosphonium-tagged fluorescent coumarins for enhanced detection of conjugates by mass spectrometry. Organic & Biomolecular Chemistry, 14(32), 7777-7791. doi:10.1039/c6ob01080f | es_ES |
dc.description.references | Scott, D. W. (1946). Thermal Rearrangement of Branched-Chain Methylpolysiloxanes1. Journal of the American Chemical Society, 68(3), 356-358. doi:10.1021/ja01207a003 | es_ES |
dc.description.references | Xu, B., Gunn, J. M., Cruz, J. M. D., Lozovoy, V. V., & Dantus, M. (2006). Quantitative investigation of the multiphoton intrapulse interference phase scan method for simultaneous phase measurement and compensation of femtosecond laser pulses. Journal of the Optical Society of America B, 23(4), 750. doi:10.1364/josab.23.000750 | es_ES |
dc.description.references | Domińska, M., Jackowska, K., Krysiński, P., & Blanchard, G. J. (2005). Probing Interfacial Organization in Surface Monolayers Using Tethered Pyrene. 1. Structural Mediation of Electron and Proton Access to Adsorbates. The Journal of Physical Chemistry B, 109(33), 15812-15821. doi:10.1021/jp0513824 | es_ES |
dc.description.references | Buruiana, E. C., Chibac, A. L., Buruiana, T., & Musteata, V. (2011). Synthesis and properties of fluorescent hybrid nanocomposites based on copolyacrylates with dansyl semicarbazide units. Journal of Luminescence, 131(7), 1492-1501. doi:10.1016/j.jlumin.2011.03.045 | es_ES |
dc.description.references | Montalti, M., Prodi, L., Zaccheroni, N., Battistini, G., Marcuz, S., Mancin, F., … Tonellato, U. (2006). Size Effect on the Fluorescence Properties of Dansyl-Doped Silica Nanoparticles. Langmuir, 22(13), 5877-5881. doi:10.1021/la053473y | es_ES |
dc.description.references | Tripathi, A. K., Mohapatra, M., & Mishra, A. K. (2015). Fluorescence of N-acylated dansylamide with a long hydrophobic tail: sensitive response to premicellar aggregation of sodium deoxycholate. Physical Chemistry Chemical Physics, 17(44), 29985-29994. doi:10.1039/c5cp04263a | es_ES |
dc.description.references | Zhao, X., Zhang, W., Wu, Y., Liu, H., & Hao, X. (2014). Facile fabrication of OA-POSS modified near-infrared-emitting CdSeTe alloyed quantum dots and their bioapplications. New J. Chem., 38(7), 3242-3249. doi:10.1039/c4nj00322e | es_ES |
dc.description.references | Georgiev, N. I., Dimitrova, M. D., Mavrova, A. T., & Bojinov, V. B. (2017). Synthesis, fluorescence-sensing and molecular logic of two water-soluble 1,8-naphthalimides. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 183, 7-16. doi:10.1016/j.saa.2017.04.016 | es_ES |
dc.description.references | Jiang, W., Fu, Q., Fan, H., Ho, J., & Wang, W. (2007). A Highly Selective Fluorescent Probe for Thiophenols. Angewandte Chemie International Edition, 46(44), 8445-8448. doi:10.1002/anie.200702271 | es_ES |
dc.description.references | Jiang, W., Fu, Q., Fan, H., Ho, J., & Wang, W. (2007). A Highly Selective Fluorescent Probe for Thiophenols. Angewandte Chemie, 119(44), 8597-8600. doi:10.1002/ange.200702271 | es_ES |
dc.description.references | Bamgbose, M. K., Adebambo, P. O., Solola, G. T., Badmus, B. S., Dare, E. O., & Adebayo, G. A. (2018). First-principle survey of structural, electronic, and optical properties of zinc-blende BxAlyGa1-x-yN quaternary alloy. Materials Letters, 221, 330-335. doi:10.1016/j.matlet.2018.03.153 | es_ES |
dc.description.references | Wechakorn, K., Suksen, K., Piyachaturawat, P., & Kongsaeree, P. (2016). Rhodamine-based fluorescent and colorimetric sensor for zinc and its application in bioimaging. Sensors and Actuators B: Chemical, 228, 270-277. doi:10.1016/j.snb.2016.01.045 | es_ES |
dc.description.references | Liu, X., Zhang, W., Li, C., Zhou, W., Li, Z., Yu, M., & Wei, L. (2015). Nanomolar detection of Hcy, GSH and Cys in aqueous solution, test paper and living cells. RSC Advances, 5(7), 4941-4946. doi:10.1039/c4ra13262a | es_ES |
dc.description.references | Sednev, M. V., Belov, V. N., & Hell, S. W. (2015). Fluorescent dyes with large Stokes shifts for super-resolution optical microscopy of biological objects: a review. Methods and Applications in Fluorescence, 3(4), 042004. doi:10.1088/2050-6120/3/4/042004 | es_ES |
dc.description.references | Schiedel, M.-S., Briehn, C. A., & Bäuerle, P. (2001). Single-Compound Libraries of Organic Materials: Parallel Synthesis and Screening of Fluorescent Dyes. Angewandte Chemie International Edition, 40(24), 4677-4680. doi:10.1002/1521-3773(20011217)40:24<4677::aid-anie4677>3.0.co;2-u | es_ES |
dc.description.references | Schiedel, M.-S., Briehn, C. A., & Bäuerle, P. (2001). Einzelsubstanzbibliotheken organischer Materialien: Parallelsynthese und Screening von Fluoreszenzfarbstoffen. Angewandte Chemie, 113(24), 4813-4816. doi:10.1002/1521-3757(20011217)113:24<4813::aid-ange4813>3.0.co;2-t | es_ES |
dc.description.references | Brik, A., Alexandratos, J., Lin, Y.-C., Elder, J. H., Olson, A. J., Wlodawer, A., … Wong, C.-H. (2005). 1,2,3-Triazole as a Peptide Surrogate in the Rapid Synthesis of HIV-1 Protease Inhibitors. ChemBioChem, 6(7), 1167-1169. doi:10.1002/cbic.200500101 | es_ES |
dc.description.references | Chen, H., Ma, R., Chen, Y., & Fan, L.-J. (2017). Fluorescence Development of Latent Fingerprint with Conjugated Polymer Nanoparticles in Aqueous Colloidal Solution. ACS Applied Materials & Interfaces, 9(5), 4908-4915. doi:10.1021/acsami.6b15951 | es_ES |
dc.description.references | Wang, L., Xue, R., Xu, L., Lu, X., Chen, R., & Tao, X. (2012). Hydrogen-bonding directed cocrystallization of flexible piperazine with hydroxybenzoic acid derivatives: Structural diversity and synthon prediction. Science China Chemistry, 55(7), 1228-1235. doi:10.1007/s11426-011-4487-4 | es_ES |
dc.description.references | Van Helmond, W., O’Brien, V., de Jong, R., van Esch, J., Oldenhof, S., & de Puit, M. (2018). Collection of amino acids and DNA from fingerprints using hydrogels. The Analyst, 143(4), 900-905. doi:10.1039/c7an01692a | es_ES |
dc.description.references | Abdelwahab, W. M., Phillips, E., & Patonay, G. (2018). Preparation of fluorescently labeled silica nanoparticles using an amino acid-catalyzed seeds regrowth technique: Application to latent fingerprints detection and hemocompatibility studies. Journal of Colloid and Interface Science, 512, 801-811. doi:10.1016/j.jcis.2017.10.062 | es_ES |
dc.description.references | Wang, Z., Zhang, P., Liu, H., Zhao, Z., Xiong, L., He, W., … Tang, B. Z. (2019). Robust Serum Albumin-Responsive AIEgen Enables Latent Bloodstain Visualization in High Resolution and Reliability for Crime Scene Investigation. ACS Applied Materials & Interfaces, 11(19), 17306-17312. doi:10.1021/acsami.9b04269 | es_ES |
dc.description.references | Friesen, J. B. (2014). Forensic Chemistry: The Revelation of Latent Fingerprints. Journal of Chemical Education, 92(3), 497-504. doi:10.1021/ed400597u | es_ES |
dc.description.references | Chen, H., Chang, K., Men, X., Sun, K., Fang, X., Ma, C., … Wu, C. (2015). Covalent Patterning and Rapid Visualization of Latent Fingerprints with Photo-Cross-Linkable Semiconductor Polymer Dots. ACS Applied Materials & Interfaces, 7(26), 14477-14484. doi:10.1021/acsami.5b03749 | es_ES |