- -

Fluorescent-Labeled Octasilsesquioxane Nanohybrids as Potential Materials for Latent Fingerprinting Detection

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Fluorescent-Labeled Octasilsesquioxane Nanohybrids as Potential Materials for Latent Fingerprinting Detection

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Dare, Enock O. es_ES
dc.contributor.author Vendrell-Criado, Victoria es_ES
dc.contributor.author Jiménez Molero, María Consuelo es_ES
dc.contributor.author Pérez-Ruiz, Raúl es_ES
dc.contributor.author Díaz Díaz, David es_ES
dc.date.accessioned 2021-05-14T12:41:08Z
dc.date.available 2021-05-14T12:41:08Z
dc.date.issued 2020-10-15 es_ES
dc.identifier.issn 0947-6539 es_ES
dc.identifier.uri http://hdl.handle.net/10251/166369
dc.description.abstract [EN] The recent demand for fluorescent-labeled materials (FLMs) in forensic security concepts such as latent fingerprints (LFs) that encode information for anti-counterfeiting and encryption of confidential data makes necessary the development of building new and innovative materials. Here, novel FLMs based on polyhedral oligomeric silsesquioxanes (POSS) functionalized with fluorophores via "click" reactions have been successfully synthesized and fully characterized. A comprehensive study of their photophysical properties has displayed large Stokes's shift together with good photostability in all cases, fulfilling the fundamental requisites for any legible LF detection on various surfaces. The excellent performance of the hetero-bifunctional FLM in the visualization of LF is emphasized by their legibility, selectivity, sensitivity and temporal photostability. In this study, development mechanisms have been proposed and the overall concept constitute a novel approach for vis-a-vis forensic investigations to trace an individual's identity. es_ES
dc.description.sponsorship Financial support by the Alexander von Humboldt Foundation (Georg Forster Research Fellowship to E.O. Dare), Generalitat Valenciana (CIDEGENT/2018/044), Universitat Regensburg and Universidad de La Laguna is gratefully acknowledged. Laboratory assistance from MSc A. Abramov and Dr. B. Maiti (Universitat Regensburg) is deeply acknowledged. D.D.D. thanks the DFG for the Heisenberg Professorship Award and the Spanish Ministry of Science, Innovation and Universities for the Senior Beatriz Galindo Award (Distinguished Researcher; BEAGAL18/00166). D.D.D. thanks NANOtec, INTech, Cabildo de Tenerife and ULL for laboratory facilities. Open access funding enabled and organized by Projekt DEAL. es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof Chemistry - A European Journal es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Click chemistry es_ES
dc.subject Fingerprint identification es_ES
dc.subject Fluorophores es_ES
dc.subject Photostability es_ES
dc.subject Silsesquioxanes es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.subject.classification QUIMICA ANALITICA es_ES
dc.title Fluorescent-Labeled Octasilsesquioxane Nanohybrids as Potential Materials for Latent Fingerprinting Detection es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/chem.202001908 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MCIU//BEAGAL18%2F00166/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//CIDEGENT%2F2018%2F044/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Dare, EO.; Vendrell-Criado, V.; Jiménez Molero, MC.; Pérez-Ruiz, R.; Díaz Díaz, D. (2020). Fluorescent-Labeled Octasilsesquioxane Nanohybrids as Potential Materials for Latent Fingerprinting Detection. Chemistry - A European Journal. 26(58):13142-13146. https://doi.org/10.1002/chem.202001908 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/chem.202001908 es_ES
dc.description.upvformatpinicio 13142 es_ES
dc.description.upvformatpfin 13146 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 26 es_ES
dc.description.issue 58 es_ES
dc.identifier.pmid 32460420 es_ES
dc.identifier.pmcid PMC7692944 es_ES
dc.relation.pasarela S\413411 es_ES
dc.contributor.funder Projekt DEAL es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Universität Regensburg es_ES
dc.contributor.funder Universidad de La Laguna es_ES
dc.contributor.funder Deutsche Forschungsgemeinschaft es_ES
dc.contributor.funder Alexander von Humboldt Foundation es_ES
dc.contributor.funder Ministerio de Ciencia, Innovación y Universidades es_ES
dc.description.references Dai, Q., Duty, C. E., & Hu, M. Z. (2010). Semiconductor-Nanocrystals-Based White Light-Emitting Diodes. Small, 6(15), 1577-1588. doi:10.1002/smll.201000144 es_ES
dc.description.references Sukhanova, A., Devy, J., Venteo, L., Kaplan, H., Artemyev, M., Oleinikov, V., … Nabiev, I. (2004). Biocompatible fluorescent nanocrystals for immunolabeling of membrane proteins and cells. Analytical Biochemistry, 324(1), 60-67. doi:10.1016/j.ab.2003.09.031 es_ES
dc.description.references Ruedas-Rama, M. J., Walters, J. D., Orte, A., & Hall, E. A. H. (2012). Fluorescent nanoparticles for intracellular sensing: A review. Analytica Chimica Acta, 751, 1-23. doi:10.1016/j.aca.2012.09.025 es_ES
dc.description.references Kumbhakar, P., Biswas, S., Pandey, P., Tiwary, C. S., & Kumbhakar, P. (2019). Tailoring of structural and photoluminescence emissions by Mn and Cu co-doping in 2D nanostructures of ZnS for the visualization of latent fingerprints and generation of white light. Nanoscale, 11(4), 2017-2026. doi:10.1039/c8nr09074b es_ES
dc.description.references Song, Z., Li, Z., Lin, L., Zhang, Y., Lin, T., Chen, L., … Wang, X. (2017). Phenyl-doped graphitic carbon nitride: photoluminescence mechanism and latent fingerprint imaging. Nanoscale, 9(45), 17737-17742. doi:10.1039/c7nr04845a es_ES
dc.description.references Bécue, A. (2016). Emerging fields in fingermark (meta)detection – a critical review. Analytical Methods, 8(45), 7983-8003. doi:10.1039/c6ay02496c es_ES
dc.description.references Li, F., Wang, X., Xia, Z., Pan, C., & Liu, Q. (2017). Photoluminescence Tuning in Stretchable PDMS Film Grafted Doped Core/Multishell Quantum Dots for Anticounterfeiting. Advanced Functional Materials, 27(17), 1700051. doi:10.1002/adfm.201700051 es_ES
dc.description.references Swati, G., Bishnoi, S., Singh, P., Lohia, N., Jaiswal, V. V., Dalai, M. K., & Haranath, D. (2018). Chemistry of extracting high-contrast invisible fingerprints from transparent and colored substrates using a novel phosphorescent label. Analytical Methods, 10(3), 308-313. doi:10.1039/c7ay02713c es_ES
dc.description.references Li, K., Qin, W., Li, F., Zhao, X., Jiang, B., Wang, K., … Li, D. (2013). Nanoplasmonic Imaging of Latent Fingerprints and Identification of Cocaine. Angewandte Chemie International Edition, 52(44), 11542-11545. doi:10.1002/anie.201305980 es_ES
dc.description.references Li, K., Qin, W., Li, F., Zhao, X., Jiang, B., Wang, K., … Li, D. (2013). Nanoplasmonic Imaging of Latent Fingerprints and Identification of Cocaine. Angewandte Chemie, 125(44), 11756-11759. doi:10.1002/ange.201305980 es_ES
dc.description.references Sokolova, V., & Epple, M. (2011). Synthetic pathways to make nanoparticles fluorescent. Nanoscale, 3(5), 1957. doi:10.1039/c1nr00002k es_ES
dc.description.references Vollrath, A., Schubert, S., & Schubert, U. S. (2013). Fluorescence imaging of cancer tissue based on metal-free polymeric nanoparticles – a review. Journal of Materials Chemistry B, 1(15), 1994. doi:10.1039/c3tb20089b es_ES
dc.description.references Maltoni, D., Maio, D., Jain, A. K., & Prabhakar, S. (2009). Handbook of Fingerprint Recognition. doi:10.1007/978-1-84882-254-2 es_ES
dc.description.references Hazarika, P., & Russell, D. A. (2012). Advances in Fingerprint Analysis. Angewandte Chemie International Edition, 51(15), 3524-3531. doi:10.1002/anie.201104313 es_ES
dc.description.references Hazarika, P., & Russell, D. A. (2012). Fortschritte in der Fingerabdruckanalyse. Angewandte Chemie, 124(15), 3582-3589. doi:10.1002/ange.201104313 es_ES
dc.description.references Wang, M., Li, M., Yu, A., Zhu, Y., Yang, M., & Mao, C. (2017). Fluorescent Nanomaterials for the Development of Latent Fingerprints in Forensic Sciences. Advanced Functional Materials, 27(14), 1606243. doi:10.1002/adfm.201606243 es_ES
dc.description.references Cordes, D. B., Lickiss, P. D., & Rataboul, F. (2010). Recent Developments in the Chemistry of Cubic Polyhedral Oligosilsesquioxanes. Chemical Reviews, 110(4), 2081-2173. doi:10.1021/cr900201r es_ES
dc.description.references Lin, M., Luo, C., Xing, G., Chen, L., & Ling, Q. (2017). Influence of polyhedral oligomeric silsesquioxanes (POSS) on the luminescence properties of non-conjugated copolymers based on iridium complex and carbazole units. RSC Advances, 7(63), 39512-39522. doi:10.1039/c7ra07316j es_ES
dc.description.references Dong, F., Lu, L., & Ha, C. (2019). Silsesquioxane‐Containing Hybrid Nanomaterials: Fascinating Platforms for Advanced Applications. Macromolecular Chemistry and Physics, 220(3), 1800324. doi:10.1002/macp.201800324 es_ES
dc.description.references Du, Y., & Liu, H. (2020). Cage-like silsesquioxanes-based hybrid materials. Dalton Transactions, 49(17), 5396-5405. doi:10.1039/d0dt00587h es_ES
dc.description.references Shi, H., Yang, J., You, M., Li, Z., & He, C. (2020). Polyhedral Oligomeric Silsesquioxanes (POSS)-Based Hybrid Soft Gels: Molecular Design, Material Advantages, and Emerging Applications. ACS Materials Letters, 2(4), 296-316. doi:10.1021/acsmaterialslett.9b00491 es_ES
dc.description.references Du, F., Wang, H., Bao, Y., Liu, B., Zheng, H., & Bai, R. (2011). Conjugated coordination polymers based on 8-hydroxyquinoline ligands: impact of polyhedral oligomeric silsesquioxanes on solubility and luminescence. Journal of Materials Chemistry, 21(29), 10859. doi:10.1039/c1jm11389e es_ES
dc.description.references Pérez-Ojeda, M. E., Trastoy, B., Rol, Á., Chiara, M. D., García-Moreno, I., & Chiara, J. L. (2013). Controlled Click-Assembly of Well-Defined Hetero-Bifunctional Cubic Silsesquioxanes and Their Application in Targeted Bioimaging. Chemistry - A European Journal, 19(21), 6630-6640. doi:10.1002/chem.201300339 es_ES
dc.description.references Li, Y., Dong, X.-H., Zou, Y., Wang, Z., Yue, K., Huang, M., … Cheng, S. Z. D. (2017). Polyhedral oligomeric silsesquioxane meets «click» chemistry: Rational design and facile preparation of functional hybrid materials. Polymer, 125, 303-329. doi:10.1016/j.polymer.2017.08.008 es_ES
dc.description.references Hendan, B. J., & Marsmann, H. C. (1994). Semipräparative Trennung gemischt substituierter Octa-(organylsilsesquioxane) mittels Normal-Phase-HPLC und ihre 29Si-NMR-spektroskopische Unters. Journal of Organometallic Chemistry, 483(1-2), 33-38. doi:10.1016/0022-328x(94)87144-2 es_ES
dc.description.references Kolb, H. C., Finn, M. G., & Sharpless, K. B. (2001). Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angewandte Chemie International Edition, 40(11), 2004-2021. doi:10.1002/1521-3773(20010601)40:11<2004::aid-anie2004>3.0.co;2-5 es_ES
dc.description.references Kolb, H. C., Finn, M. G., & Sharpless, K. B. (2001). Click-Chemie: diverse chemische Funktionalität mit einer Handvoll guter Reaktionen. Angewandte Chemie, 113(11), 2056-2075. doi:10.1002/1521-3757(20010601)113:11<2056::aid-ange2056>3.0.co;2-w es_ES
dc.description.references Pérez-Ojeda, M. E., Trastoy, B., López-Arbeloa, Í., Bañuelos, J., Costela, Á., García-Moreno, I., & Chiara, J. L. (2011). Click Assembly of Dye-Functionalized Octasilsesquioxanes for Highly Efficient and Photostable Photonic Systems. Chemistry - A European Journal, 17(47), 13258-13268. doi:10.1002/chem.201100512 es_ES
dc.description.references Han, J., Zheng, Y., Zheng, S., Li, S., Hu, T., Tang, A., & Gao, C. (2014). Water soluble octa-functionalized POSS: all-click chemistry synthesis and efficient host–guest encapsulation. Chem. Commun., 50(63), 8712-8714. doi:10.1039/c4cc01956c es_ES
dc.description.references Dudziec, B., Żak, P., & Marciniec, B. (2019). Synthetic Routes to Silsesquioxane-Based Systems as Photoactive Materials and Their Precursors. Polymers, 11(3), 504. doi:10.3390/polym11030504 es_ES
dc.description.references Fabritz, S., Heyl, D., Bagutski, V., Empting, M., Rikowski, E., Frauendorf, H., … Kolmar, H. (2010). Towards click bioconjugations on cube-octameric silsesquioxane scaffolds. Organic & Biomolecular Chemistry, 8(9), 2212. doi:10.1039/b923393h es_ES
dc.description.references Hartmann-Thompson, C., Keeley, D. L., Pollock, K. M., Dvornic, P. R., Keinath, S. E., Dantus, M., … LeCaptain, D. J. (2008). One- and Two-Photon Fluorescent Polyhedral Oligosilsesquioxane (POSS) Nanosensor Arrays for the Remote Detection of Analytes in Clouds, in Solution, and on Surfaces. Chemistry of Materials, 20(8), 2829-2838. doi:10.1021/cm703641s es_ES
dc.description.references Jing, L., Liang, C., Shi, X., Ye, S., & Xian, Y. (2012). Fluorescent probe for Fe(iii) based on pyrene grafted multiwalled carbon nanotubes by click reaction. The Analyst, 137(7), 1718. doi:10.1039/c2an16152d es_ES
dc.description.references Bolletta, F., Fabbri, D., Lombardo, M., Prodi, L., Trombini, C., & Zaccheroni, N. (1996). Synthesis and Photophysical Properties of Fluorescent Derivatives of Methylmercury. Organometallics, 15(9), 2415-2417. doi:10.1021/om950793b es_ES
dc.description.references Lizzul-Jurse, A., Bailly, L., Hubert-Roux, M., Afonso, C., Renard, P.-Y., & Sabot, C. (2016). Readily functionalizable phosphonium-tagged fluorescent coumarins for enhanced detection of conjugates by mass spectrometry. Organic & Biomolecular Chemistry, 14(32), 7777-7791. doi:10.1039/c6ob01080f es_ES
dc.description.references Scott, D. W. (1946). Thermal Rearrangement of Branched-Chain Methylpolysiloxanes1. Journal of the American Chemical Society, 68(3), 356-358. doi:10.1021/ja01207a003 es_ES
dc.description.references Xu, B., Gunn, J. M., Cruz, J. M. D., Lozovoy, V. V., & Dantus, M. (2006). Quantitative investigation of the multiphoton intrapulse interference phase scan method for simultaneous phase measurement and compensation of femtosecond laser pulses. Journal of the Optical Society of America B, 23(4), 750. doi:10.1364/josab.23.000750 es_ES
dc.description.references Domińska, M., Jackowska, K., Krysiński, P., & Blanchard, G. J. (2005). Probing Interfacial Organization in Surface Monolayers Using Tethered Pyrene. 1. Structural Mediation of Electron and Proton Access to Adsorbates. The Journal of Physical Chemistry B, 109(33), 15812-15821. doi:10.1021/jp0513824 es_ES
dc.description.references Buruiana, E. C., Chibac, A. L., Buruiana, T., & Musteata, V. (2011). Synthesis and properties of fluorescent hybrid nanocomposites based on copolyacrylates with dansyl semicarbazide units. Journal of Luminescence, 131(7), 1492-1501. doi:10.1016/j.jlumin.2011.03.045 es_ES
dc.description.references Montalti, M., Prodi, L., Zaccheroni, N., Battistini, G., Marcuz, S., Mancin, F., … Tonellato, U. (2006). Size Effect on the Fluorescence Properties of Dansyl-Doped Silica Nanoparticles. Langmuir, 22(13), 5877-5881. doi:10.1021/la053473y es_ES
dc.description.references Tripathi, A. K., Mohapatra, M., & Mishra, A. K. (2015). Fluorescence of N-acylated dansylamide with a long hydrophobic tail: sensitive response to premicellar aggregation of sodium deoxycholate. Physical Chemistry Chemical Physics, 17(44), 29985-29994. doi:10.1039/c5cp04263a es_ES
dc.description.references Zhao, X., Zhang, W., Wu, Y., Liu, H., & Hao, X. (2014). Facile fabrication of OA-POSS modified near-infrared-emitting CdSeTe alloyed quantum dots and their bioapplications. New J. Chem., 38(7), 3242-3249. doi:10.1039/c4nj00322e es_ES
dc.description.references Georgiev, N. I., Dimitrova, M. D., Mavrova, A. T., & Bojinov, V. B. (2017). Synthesis, fluorescence-sensing and molecular logic of two water-soluble 1,8-naphthalimides. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 183, 7-16. doi:10.1016/j.saa.2017.04.016 es_ES
dc.description.references Jiang, W., Fu, Q., Fan, H., Ho, J., & Wang, W. (2007). A Highly Selective Fluorescent Probe for Thiophenols. Angewandte Chemie International Edition, 46(44), 8445-8448. doi:10.1002/anie.200702271 es_ES
dc.description.references Jiang, W., Fu, Q., Fan, H., Ho, J., & Wang, W. (2007). A Highly Selective Fluorescent Probe for Thiophenols. Angewandte Chemie, 119(44), 8597-8600. doi:10.1002/ange.200702271 es_ES
dc.description.references Bamgbose, M. K., Adebambo, P. O., Solola, G. T., Badmus, B. S., Dare, E. O., & Adebayo, G. A. (2018). First-principle survey of structural, electronic, and optical properties of zinc-blende BxAlyGa1-x-yN quaternary alloy. Materials Letters, 221, 330-335. doi:10.1016/j.matlet.2018.03.153 es_ES
dc.description.references Wechakorn, K., Suksen, K., Piyachaturawat, P., & Kongsaeree, P. (2016). Rhodamine-based fluorescent and colorimetric sensor for zinc and its application in bioimaging. Sensors and Actuators B: Chemical, 228, 270-277. doi:10.1016/j.snb.2016.01.045 es_ES
dc.description.references Liu, X., Zhang, W., Li, C., Zhou, W., Li, Z., Yu, M., & Wei, L. (2015). Nanomolar detection of Hcy, GSH and Cys in aqueous solution, test paper and living cells. RSC Advances, 5(7), 4941-4946. doi:10.1039/c4ra13262a es_ES
dc.description.references Sednev, M. V., Belov, V. N., & Hell, S. W. (2015). Fluorescent dyes with large Stokes shifts for super-resolution optical microscopy of biological objects: a review. Methods and Applications in Fluorescence, 3(4), 042004. doi:10.1088/2050-6120/3/4/042004 es_ES
dc.description.references Schiedel, M.-S., Briehn, C. A., & Bäuerle, P. (2001). Single-Compound Libraries of Organic Materials: Parallel Synthesis and Screening of Fluorescent Dyes. Angewandte Chemie International Edition, 40(24), 4677-4680. doi:10.1002/1521-3773(20011217)40:24<4677::aid-anie4677>3.0.co;2-u es_ES
dc.description.references Schiedel, M.-S., Briehn, C. A., & Bäuerle, P. (2001). Einzelsubstanzbibliotheken organischer Materialien: Parallelsynthese und Screening von Fluoreszenzfarbstoffen. Angewandte Chemie, 113(24), 4813-4816. doi:10.1002/1521-3757(20011217)113:24<4813::aid-ange4813>3.0.co;2-t es_ES
dc.description.references Brik, A., Alexandratos, J., Lin, Y.-C., Elder, J. H., Olson, A. J., Wlodawer, A., … Wong, C.-H. (2005). 1,2,3-Triazole as a Peptide Surrogate in the Rapid Synthesis of HIV-1 Protease Inhibitors. ChemBioChem, 6(7), 1167-1169. doi:10.1002/cbic.200500101 es_ES
dc.description.references Chen, H., Ma, R., Chen, Y., & Fan, L.-J. (2017). Fluorescence Development of Latent Fingerprint with Conjugated Polymer Nanoparticles in Aqueous Colloidal Solution. ACS Applied Materials & Interfaces, 9(5), 4908-4915. doi:10.1021/acsami.6b15951 es_ES
dc.description.references Wang, L., Xue, R., Xu, L., Lu, X., Chen, R., & Tao, X. (2012). Hydrogen-bonding directed cocrystallization of flexible piperazine with hydroxybenzoic acid derivatives: Structural diversity and synthon prediction. Science China Chemistry, 55(7), 1228-1235. doi:10.1007/s11426-011-4487-4 es_ES
dc.description.references Van Helmond, W., O’Brien, V., de Jong, R., van Esch, J., Oldenhof, S., & de Puit, M. (2018). Collection of amino acids and DNA from fingerprints using hydrogels. The Analyst, 143(4), 900-905. doi:10.1039/c7an01692a es_ES
dc.description.references Abdelwahab, W. M., Phillips, E., & Patonay, G. (2018). Preparation of fluorescently labeled silica nanoparticles using an amino acid-catalyzed seeds regrowth technique: Application to latent fingerprints detection and hemocompatibility studies. Journal of Colloid and Interface Science, 512, 801-811. doi:10.1016/j.jcis.2017.10.062 es_ES
dc.description.references Wang, Z., Zhang, P., Liu, H., Zhao, Z., Xiong, L., He, W., … Tang, B. Z. (2019). Robust Serum Albumin-Responsive AIEgen Enables Latent Bloodstain Visualization in High Resolution and Reliability for Crime Scene Investigation. ACS Applied Materials & Interfaces, 11(19), 17306-17312. doi:10.1021/acsami.9b04269 es_ES
dc.description.references Friesen, J. B. (2014). Forensic Chemistry: The Revelation of Latent Fingerprints. Journal of Chemical Education, 92(3), 497-504. doi:10.1021/ed400597u es_ES
dc.description.references Chen, H., Chang, K., Men, X., Sun, K., Fang, X., Ma, C., … Wu, C. (2015). Covalent Patterning and Rapid Visualization of Latent Fingerprints with Photo-Cross-Linkable Semiconductor Polymer Dots. ACS Applied Materials & Interfaces, 7(26), 14477-14484. doi:10.1021/acsami.5b03749 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem