- -

Fluorescent-Labeled Octasilsesquioxane Nanohybrids as Potential Materials for Latent Fingerprinting Detection

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Fluorescent-Labeled Octasilsesquioxane Nanohybrids as Potential Materials for Latent Fingerprinting Detection

Mostrar el registro completo del ítem

Dare, EO.; Vendrell-Criado, V.; Jiménez Molero, MC.; Pérez-Ruiz, R.; Díaz Díaz, D. (2020). Fluorescent-Labeled Octasilsesquioxane Nanohybrids as Potential Materials for Latent Fingerprinting Detection. Chemistry - A European Journal. 26(58):13142-13146. https://doi.org/10.1002/chem.202001908

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/166369

Ficheros en el ítem

Metadatos del ítem

Título: Fluorescent-Labeled Octasilsesquioxane Nanohybrids as Potential Materials for Latent Fingerprinting Detection
Autor: Dare, Enock O. Vendrell-Criado, Victoria Jiménez Molero, María Consuelo Pérez-Ruiz, Raúl Díaz Díaz, David
Entidad UPV: Universitat Politècnica de València. Departamento de Química - Departament de Química
Fecha difusión:
Resumen:
[EN] The recent demand for fluorescent-labeled materials (FLMs) in forensic security concepts such as latent fingerprints (LFs) that encode information for anti-counterfeiting and encryption of confidential data makes ...[+]
Palabras clave: Click chemistry , Fingerprint identification , Fluorophores , Photostability , Silsesquioxanes
Derechos de uso: Reconocimiento (by)
Fuente:
Chemistry - A European Journal. (issn: 0947-6539 )
DOI: 10.1002/chem.202001908
Editorial:
John Wiley & Sons
Versión del editor: https://doi.org/10.1002/chem.202001908
Código del Proyecto:
info:eu-repo/grantAgreement/MCIU//BEAGAL18%2F00166/
info:eu-repo/grantAgreement/GVA//CIDEGENT%2F2018%2F044/
Agradecimientos:
Financial support by the Alexander von Humboldt Foundation (Georg Forster Research Fellowship to E.O. Dare), Generalitat Valenciana (CIDEGENT/2018/044), Universitat Regensburg and Universidad de La Laguna is gratefully ...[+]
Tipo: Artículo

References

Dai, Q., Duty, C. E., & Hu, M. Z. (2010). Semiconductor-Nanocrystals-Based White Light-Emitting Diodes. Small, 6(15), 1577-1588. doi:10.1002/smll.201000144

Sukhanova, A., Devy, J., Venteo, L., Kaplan, H., Artemyev, M., Oleinikov, V., … Nabiev, I. (2004). Biocompatible fluorescent nanocrystals for immunolabeling of membrane proteins and cells. Analytical Biochemistry, 324(1), 60-67. doi:10.1016/j.ab.2003.09.031

Ruedas-Rama, M. J., Walters, J. D., Orte, A., & Hall, E. A. H. (2012). Fluorescent nanoparticles for intracellular sensing: A review. Analytica Chimica Acta, 751, 1-23. doi:10.1016/j.aca.2012.09.025 [+]
Dai, Q., Duty, C. E., & Hu, M. Z. (2010). Semiconductor-Nanocrystals-Based White Light-Emitting Diodes. Small, 6(15), 1577-1588. doi:10.1002/smll.201000144

Sukhanova, A., Devy, J., Venteo, L., Kaplan, H., Artemyev, M., Oleinikov, V., … Nabiev, I. (2004). Biocompatible fluorescent nanocrystals for immunolabeling of membrane proteins and cells. Analytical Biochemistry, 324(1), 60-67. doi:10.1016/j.ab.2003.09.031

Ruedas-Rama, M. J., Walters, J. D., Orte, A., & Hall, E. A. H. (2012). Fluorescent nanoparticles for intracellular sensing: A review. Analytica Chimica Acta, 751, 1-23. doi:10.1016/j.aca.2012.09.025

Kumbhakar, P., Biswas, S., Pandey, P., Tiwary, C. S., & Kumbhakar, P. (2019). Tailoring of structural and photoluminescence emissions by Mn and Cu co-doping in 2D nanostructures of ZnS for the visualization of latent fingerprints and generation of white light. Nanoscale, 11(4), 2017-2026. doi:10.1039/c8nr09074b

Song, Z., Li, Z., Lin, L., Zhang, Y., Lin, T., Chen, L., … Wang, X. (2017). Phenyl-doped graphitic carbon nitride: photoluminescence mechanism and latent fingerprint imaging. Nanoscale, 9(45), 17737-17742. doi:10.1039/c7nr04845a

Bécue, A. (2016). Emerging fields in fingermark (meta)detection – a critical review. Analytical Methods, 8(45), 7983-8003. doi:10.1039/c6ay02496c

Li, F., Wang, X., Xia, Z., Pan, C., & Liu, Q. (2017). Photoluminescence Tuning in Stretchable PDMS Film Grafted Doped Core/Multishell Quantum Dots for Anticounterfeiting. Advanced Functional Materials, 27(17), 1700051. doi:10.1002/adfm.201700051

Swati, G., Bishnoi, S., Singh, P., Lohia, N., Jaiswal, V. V., Dalai, M. K., & Haranath, D. (2018). Chemistry of extracting high-contrast invisible fingerprints from transparent and colored substrates using a novel phosphorescent label. Analytical Methods, 10(3), 308-313. doi:10.1039/c7ay02713c

Li, K., Qin, W., Li, F., Zhao, X., Jiang, B., Wang, K., … Li, D. (2013). Nanoplasmonic Imaging of Latent Fingerprints and Identification of Cocaine. Angewandte Chemie International Edition, 52(44), 11542-11545. doi:10.1002/anie.201305980

Li, K., Qin, W., Li, F., Zhao, X., Jiang, B., Wang, K., … Li, D. (2013). Nanoplasmonic Imaging of Latent Fingerprints and Identification of Cocaine. Angewandte Chemie, 125(44), 11756-11759. doi:10.1002/ange.201305980

Sokolova, V., & Epple, M. (2011). Synthetic pathways to make nanoparticles fluorescent. Nanoscale, 3(5), 1957. doi:10.1039/c1nr00002k

Vollrath, A., Schubert, S., & Schubert, U. S. (2013). Fluorescence imaging of cancer tissue based on metal-free polymeric nanoparticles – a review. Journal of Materials Chemistry B, 1(15), 1994. doi:10.1039/c3tb20089b

Maltoni, D., Maio, D., Jain, A. K., & Prabhakar, S. (2009). Handbook of Fingerprint Recognition. doi:10.1007/978-1-84882-254-2

Hazarika, P., & Russell, D. A. (2012). Advances in Fingerprint Analysis. Angewandte Chemie International Edition, 51(15), 3524-3531. doi:10.1002/anie.201104313

Hazarika, P., & Russell, D. A. (2012). Fortschritte in der Fingerabdruckanalyse. Angewandte Chemie, 124(15), 3582-3589. doi:10.1002/ange.201104313

Wang, M., Li, M., Yu, A., Zhu, Y., Yang, M., & Mao, C. (2017). Fluorescent Nanomaterials for the Development of Latent Fingerprints in Forensic Sciences. Advanced Functional Materials, 27(14), 1606243. doi:10.1002/adfm.201606243

Cordes, D. B., Lickiss, P. D., & Rataboul, F. (2010). Recent Developments in the Chemistry of Cubic Polyhedral Oligosilsesquioxanes. Chemical Reviews, 110(4), 2081-2173. doi:10.1021/cr900201r

Lin, M., Luo, C., Xing, G., Chen, L., & Ling, Q. (2017). Influence of polyhedral oligomeric silsesquioxanes (POSS) on the luminescence properties of non-conjugated copolymers based on iridium complex and carbazole units. RSC Advances, 7(63), 39512-39522. doi:10.1039/c7ra07316j

Dong, F., Lu, L., & Ha, C. (2019). Silsesquioxane‐Containing Hybrid Nanomaterials: Fascinating Platforms for Advanced Applications. Macromolecular Chemistry and Physics, 220(3), 1800324. doi:10.1002/macp.201800324

Du, Y., & Liu, H. (2020). Cage-like silsesquioxanes-based hybrid materials. Dalton Transactions, 49(17), 5396-5405. doi:10.1039/d0dt00587h

Shi, H., Yang, J., You, M., Li, Z., & He, C. (2020). Polyhedral Oligomeric Silsesquioxanes (POSS)-Based Hybrid Soft Gels: Molecular Design, Material Advantages, and Emerging Applications. ACS Materials Letters, 2(4), 296-316. doi:10.1021/acsmaterialslett.9b00491

Du, F., Wang, H., Bao, Y., Liu, B., Zheng, H., & Bai, R. (2011). Conjugated coordination polymers based on 8-hydroxyquinoline ligands: impact of polyhedral oligomeric silsesquioxanes on solubility and luminescence. Journal of Materials Chemistry, 21(29), 10859. doi:10.1039/c1jm11389e

Pérez-Ojeda, M. E., Trastoy, B., Rol, Á., Chiara, M. D., García-Moreno, I., & Chiara, J. L. (2013). Controlled Click-Assembly of Well-Defined Hetero-Bifunctional Cubic Silsesquioxanes and Their Application in Targeted Bioimaging. Chemistry - A European Journal, 19(21), 6630-6640. doi:10.1002/chem.201300339

Li, Y., Dong, X.-H., Zou, Y., Wang, Z., Yue, K., Huang, M., … Cheng, S. Z. D. (2017). Polyhedral oligomeric silsesquioxane meets «click» chemistry: Rational design and facile preparation of functional hybrid materials. Polymer, 125, 303-329. doi:10.1016/j.polymer.2017.08.008

Hendan, B. J., & Marsmann, H. C. (1994). Semipräparative Trennung gemischt substituierter Octa-(organylsilsesquioxane) mittels Normal-Phase-HPLC und ihre 29Si-NMR-spektroskopische Unters. Journal of Organometallic Chemistry, 483(1-2), 33-38. doi:10.1016/0022-328x(94)87144-2

Kolb, H. C., Finn, M. G., & Sharpless, K. B. (2001). Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angewandte Chemie International Edition, 40(11), 2004-2021. doi:10.1002/1521-3773(20010601)40:11<2004::aid-anie2004>3.0.co;2-5

Kolb, H. C., Finn, M. G., & Sharpless, K. B. (2001). Click-Chemie: diverse chemische Funktionalität mit einer Handvoll guter Reaktionen. Angewandte Chemie, 113(11), 2056-2075. doi:10.1002/1521-3757(20010601)113:11<2056::aid-ange2056>3.0.co;2-w

Pérez-Ojeda, M. E., Trastoy, B., López-Arbeloa, Í., Bañuelos, J., Costela, Á., García-Moreno, I., & Chiara, J. L. (2011). Click Assembly of Dye-Functionalized Octasilsesquioxanes for Highly Efficient and Photostable Photonic Systems. Chemistry - A European Journal, 17(47), 13258-13268. doi:10.1002/chem.201100512

Han, J., Zheng, Y., Zheng, S., Li, S., Hu, T., Tang, A., & Gao, C. (2014). Water soluble octa-functionalized POSS: all-click chemistry synthesis and efficient host–guest encapsulation. Chem. Commun., 50(63), 8712-8714. doi:10.1039/c4cc01956c

Dudziec, B., Żak, P., & Marciniec, B. (2019). Synthetic Routes to Silsesquioxane-Based Systems as Photoactive Materials and Their Precursors. Polymers, 11(3), 504. doi:10.3390/polym11030504

Fabritz, S., Heyl, D., Bagutski, V., Empting, M., Rikowski, E., Frauendorf, H., … Kolmar, H. (2010). Towards click bioconjugations on cube-octameric silsesquioxane scaffolds. Organic & Biomolecular Chemistry, 8(9), 2212. doi:10.1039/b923393h

Hartmann-Thompson, C., Keeley, D. L., Pollock, K. M., Dvornic, P. R., Keinath, S. E., Dantus, M., … LeCaptain, D. J. (2008). One- and Two-Photon Fluorescent Polyhedral Oligosilsesquioxane (POSS) Nanosensor Arrays for the Remote Detection of Analytes in Clouds, in Solution, and on Surfaces. Chemistry of Materials, 20(8), 2829-2838. doi:10.1021/cm703641s

Jing, L., Liang, C., Shi, X., Ye, S., & Xian, Y. (2012). Fluorescent probe for Fe(iii) based on pyrene grafted multiwalled carbon nanotubes by click reaction. The Analyst, 137(7), 1718. doi:10.1039/c2an16152d

Bolletta, F., Fabbri, D., Lombardo, M., Prodi, L., Trombini, C., & Zaccheroni, N. (1996). Synthesis and Photophysical Properties of Fluorescent Derivatives of Methylmercury. Organometallics, 15(9), 2415-2417. doi:10.1021/om950793b

Lizzul-Jurse, A., Bailly, L., Hubert-Roux, M., Afonso, C., Renard, P.-Y., & Sabot, C. (2016). Readily functionalizable phosphonium-tagged fluorescent coumarins for enhanced detection of conjugates by mass spectrometry. Organic & Biomolecular Chemistry, 14(32), 7777-7791. doi:10.1039/c6ob01080f

Scott, D. W. (1946). Thermal Rearrangement of Branched-Chain Methylpolysiloxanes1. Journal of the American Chemical Society, 68(3), 356-358. doi:10.1021/ja01207a003

Xu, B., Gunn, J. M., Cruz, J. M. D., Lozovoy, V. V., & Dantus, M. (2006). Quantitative investigation of the multiphoton intrapulse interference phase scan method for simultaneous phase measurement and compensation of femtosecond laser pulses. Journal of the Optical Society of America B, 23(4), 750. doi:10.1364/josab.23.000750

Domińska, M., Jackowska, K., Krysiński, P., & Blanchard, G. J. (2005). Probing Interfacial Organization in Surface Monolayers Using Tethered Pyrene. 1. Structural Mediation of Electron and Proton Access to Adsorbates. The Journal of Physical Chemistry B, 109(33), 15812-15821. doi:10.1021/jp0513824

Buruiana, E. C., Chibac, A. L., Buruiana, T., & Musteata, V. (2011). Synthesis and properties of fluorescent hybrid nanocomposites based on copolyacrylates with dansyl semicarbazide units. Journal of Luminescence, 131(7), 1492-1501. doi:10.1016/j.jlumin.2011.03.045

Montalti, M., Prodi, L., Zaccheroni, N., Battistini, G., Marcuz, S., Mancin, F., … Tonellato, U. (2006). Size Effect on the Fluorescence Properties of Dansyl-Doped Silica Nanoparticles. Langmuir, 22(13), 5877-5881. doi:10.1021/la053473y

Tripathi, A. K., Mohapatra, M., & Mishra, A. K. (2015). Fluorescence of N-acylated dansylamide with a long hydrophobic tail: sensitive response to premicellar aggregation of sodium deoxycholate. Physical Chemistry Chemical Physics, 17(44), 29985-29994. doi:10.1039/c5cp04263a

Zhao, X., Zhang, W., Wu, Y., Liu, H., & Hao, X. (2014). Facile fabrication of OA-POSS modified near-infrared-emitting CdSeTe alloyed quantum dots and their bioapplications. New J. Chem., 38(7), 3242-3249. doi:10.1039/c4nj00322e

Georgiev, N. I., Dimitrova, M. D., Mavrova, A. T., & Bojinov, V. B. (2017). Synthesis, fluorescence-sensing and molecular logic of two water-soluble 1,8-naphthalimides. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 183, 7-16. doi:10.1016/j.saa.2017.04.016

Jiang, W., Fu, Q., Fan, H., Ho, J., & Wang, W. (2007). A Highly Selective Fluorescent Probe for Thiophenols. Angewandte Chemie International Edition, 46(44), 8445-8448. doi:10.1002/anie.200702271

Jiang, W., Fu, Q., Fan, H., Ho, J., & Wang, W. (2007). A Highly Selective Fluorescent Probe for Thiophenols. Angewandte Chemie, 119(44), 8597-8600. doi:10.1002/ange.200702271

Bamgbose, M. K., Adebambo, P. O., Solola, G. T., Badmus, B. S., Dare, E. O., & Adebayo, G. A. (2018). First-principle survey of structural, electronic, and optical properties of zinc-blende BxAlyGa1-x-yN quaternary alloy. Materials Letters, 221, 330-335. doi:10.1016/j.matlet.2018.03.153

Wechakorn, K., Suksen, K., Piyachaturawat, P., & Kongsaeree, P. (2016). Rhodamine-based fluorescent and colorimetric sensor for zinc and its application in bioimaging. Sensors and Actuators B: Chemical, 228, 270-277. doi:10.1016/j.snb.2016.01.045

Liu, X., Zhang, W., Li, C., Zhou, W., Li, Z., Yu, M., & Wei, L. (2015). Nanomolar detection of Hcy, GSH and Cys in aqueous solution, test paper and living cells. RSC Advances, 5(7), 4941-4946. doi:10.1039/c4ra13262a

Sednev, M. V., Belov, V. N., & Hell, S. W. (2015). Fluorescent dyes with large Stokes shifts for super-resolution optical microscopy of biological objects: a review. Methods and Applications in Fluorescence, 3(4), 042004. doi:10.1088/2050-6120/3/4/042004

Schiedel, M.-S., Briehn, C. A., & Bäuerle, P. (2001). Single-Compound Libraries of Organic Materials: Parallel Synthesis and Screening of Fluorescent Dyes. Angewandte Chemie International Edition, 40(24), 4677-4680. doi:10.1002/1521-3773(20011217)40:24<4677::aid-anie4677>3.0.co;2-u

Schiedel, M.-S., Briehn, C. A., & Bäuerle, P. (2001). Einzelsubstanzbibliotheken organischer Materialien: Parallelsynthese und Screening von Fluoreszenzfarbstoffen. Angewandte Chemie, 113(24), 4813-4816. doi:10.1002/1521-3757(20011217)113:24<4813::aid-ange4813>3.0.co;2-t

Brik, A., Alexandratos, J., Lin, Y.-C., Elder, J. H., Olson, A. J., Wlodawer, A., … Wong, C.-H. (2005). 1,2,3-Triazole as a Peptide Surrogate in the Rapid Synthesis of HIV-1 Protease Inhibitors. ChemBioChem, 6(7), 1167-1169. doi:10.1002/cbic.200500101

Chen, H., Ma, R., Chen, Y., & Fan, L.-J. (2017). Fluorescence Development of Latent Fingerprint with Conjugated Polymer Nanoparticles in Aqueous Colloidal Solution. ACS Applied Materials & Interfaces, 9(5), 4908-4915. doi:10.1021/acsami.6b15951

Wang, L., Xue, R., Xu, L., Lu, X., Chen, R., & Tao, X. (2012). Hydrogen-bonding directed cocrystallization of flexible piperazine with hydroxybenzoic acid derivatives: Structural diversity and synthon prediction. Science China Chemistry, 55(7), 1228-1235. doi:10.1007/s11426-011-4487-4

Van Helmond, W., O’Brien, V., de Jong, R., van Esch, J., Oldenhof, S., & de Puit, M. (2018). Collection of amino acids and DNA from fingerprints using hydrogels. The Analyst, 143(4), 900-905. doi:10.1039/c7an01692a

Abdelwahab, W. M., Phillips, E., & Patonay, G. (2018). Preparation of fluorescently labeled silica nanoparticles using an amino acid-catalyzed seeds regrowth technique: Application to latent fingerprints detection and hemocompatibility studies. Journal of Colloid and Interface Science, 512, 801-811. doi:10.1016/j.jcis.2017.10.062

Wang, Z., Zhang, P., Liu, H., Zhao, Z., Xiong, L., He, W., … Tang, B. Z. (2019). Robust Serum Albumin-Responsive AIEgen Enables Latent Bloodstain Visualization in High Resolution and Reliability for Crime Scene Investigation. ACS Applied Materials & Interfaces, 11(19), 17306-17312. doi:10.1021/acsami.9b04269

Friesen, J. B. (2014). Forensic Chemistry: The Revelation of Latent Fingerprints. Journal of Chemical Education, 92(3), 497-504. doi:10.1021/ed400597u

Chen, H., Chang, K., Men, X., Sun, K., Fang, X., Ma, C., … Wu, C. (2015). Covalent Patterning and Rapid Visualization of Latent Fingerprints with Photo-Cross-Linkable Semiconductor Polymer Dots. ACS Applied Materials & Interfaces, 7(26), 14477-14484. doi:10.1021/acsami.5b03749

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem