- -

Multilingual Stance Detection in Social Media Political Debates

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Multilingual Stance Detection in Social Media Political Debates

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Lai, Mirko es_ES
dc.contributor.author Cignarella, Alessandra Teresa es_ES
dc.contributor.author Hernandez-Farias, Delia Irazu es_ES
dc.contributor.author Bosco, Cristina es_ES
dc.contributor.author Patti, Viviana es_ES
dc.contributor.author Rosso, Paolo es_ES
dc.date.accessioned 2021-05-14T12:41:18Z
dc.date.available 2021-05-14T12:41:18Z
dc.date.issued 2020-09 es_ES
dc.identifier.issn 0885-2308 es_ES
dc.identifier.uri http://hdl.handle.net/10251/166374
dc.description.abstract [EN] Stance Detection is the task of automatically determining whether the author of a text is in favor, against, or neutral towards a given target. In this paper we investigate the portability of tools performing this task across different languages, by analyzing the results achieved by a Stance Detection system (i.e. MultiTACOS) trained and tested in a multilingual setting. First of all, a set of resources on topics related to politics for English, French, Italian, Spanish and Catalan is provided which includes: novel corpora collected for the purpose of this study, and benchmark corpora exploited in Stance Detection tasks and evaluation exercises known in literature. We focus in particular on the novel corpora by describing their development and by comparing them with the benchmarks. Second, MultiTACOS is applied with different sets of features especially designed for Stance Detection, with a specific focus to exploring and combining both features based on the textual content of the tweet (e.g., style and affective load) and features based on contextual information that do not emerge directly from the text. Finally, for better highlighting the contribution of the features that most positively affect system performance in the multilingual setting, a features analysis is provided, together with a qualitative analysis of the misclassified tweets for each of the observed languages, devoted to reflect on the open challenges. es_ES
dc.description.sponsorship Cristina Bosco and Viviana Patti are partially supported by Progetto di Ateneo/CSP 2016 (Immigrants, Hate and Prejudice in Social Media, S1618_L2_BOSC_01). The work of Paolo Rosso was partially funded bythe Spanish MICINN under the research project MISMIS-FAKEnHATE on MISinformation and MIScommunication in social media: FAKE news and HATE speech (PGC2018096212-B-C31). es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Computer Speech & Language es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Stance detection es_ES
dc.subject Multilingual es_ES
dc.subject Contextual features es_ES
dc.subject Political debates es_ES
dc.subject Twitter es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.title Multilingual Stance Detection in Social Media Political Debates es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.csl.2020.101075 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UNITO//S1618_L2_BOSC_01/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-096212-B-C31/ES/DESINFORMACION Y AGRESIVIDAD EN SOCIAL MEDIA: AGREGANDO INFORMACION Y ANALIZANDO EL LENGUAJE/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.description.bibliographicCitation Lai, M.; Cignarella, AT.; Hernandez-Farias, DI.; Bosco, C.; Patti, V.; Rosso, P. (2020). Multilingual Stance Detection in Social Media Political Debates. Computer Speech & Language. 63:1-27. https://doi.org/10.1016/j.csl.2020.101075 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.csl.2020.101075 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 27 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 63 es_ES
dc.relation.pasarela S\407702 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Università degli Studi di Torino es_ES
dc.description.references Balahur, A., & Turchi, M. (2014). Comparative experiments using supervised learning and machine translation for multilingual sentiment analysis. Computer Speech & Language, 28(1), 56-75. doi:10.1016/j.csl.2013.03.004 es_ES
dc.description.references Blondel, V. D., Guillaume, J.-L., Lambiotte, R., & Lefebvre, E. (2008). Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment, 2008(10), P10008. doi:10.1088/1742-5468/2008/10/p10008 es_ES
dc.description.references Boiy, E., & Moens, M.-F. (2008). A machine learning approach to sentiment analysis in multilingual Web texts. Information Retrieval, 12(5), 526-558. doi:10.1007/s10791-008-9070-z es_ES
dc.description.references DellaPosta, D., Shi, Y., & Macy, M. (2015). Why Do Liberals Drink Lattes? American Journal of Sociology, 120(5), 1473-1511. doi:10.1086/681254 es_ES
dc.description.references Küçük, D., Can, F., 2019. A tweet dataset annotated for named entity recognition and stance detection. arXiv preprint arXiv:1901.04787. Available at: https://arxiv.org. es_ES
dc.description.references Mohammad, S. M., & Turney, P. D. (2012). CROWDSOURCING A WORD-EMOTION ASSOCIATION LEXICON. Computational Intelligence, 29(3), 436-465. doi:10.1111/j.1467-8640.2012.00460.x es_ES
dc.description.references Mohammad, S. M., Sobhani, P., & Kiritchenko, S. (2017). Stance and Sentiment in Tweets. ACM Transactions on Internet Technology, 17(3), 1-23. doi:10.1145/3003433 es_ES
dc.description.references Raghavan, U. N., Albert, R., & Kumara, S. (2007). Near linear time algorithm to detect community structures in large-scale networks. Physical Review E, 76(3). doi:10.1103/physreve.76.036106 es_ES
dc.description.references Vychegzhanin, S. V., & Kotelnikov, E. V. (2019). Stance Detection Based on Ensembles of Classifiers. Programming and Computer Software, 45(5), 228-240. doi:10.1134/s0361768819050074 es_ES
dc.description.references West, D. M. (1991). Polling effects in election campaigns. Political Behavior, 13(2), 151-163. doi:10.1007/bf00992294 es_ES
dc.description.references Whissell, C. (2009). Using the Revised Dictionary of Affect in Language to Quantify the Emotional Undertones of Samples of Natural Language. Psychological Reports, 105(2), 509-521. doi:10.2466/pr0.105.2.509-521 es_ES
dc.description.references Zappavigna, M. (2015). Searchable talk: the linguistic functions of hashtags. Social Semiotics, 25(3), 274-291. doi:10.1080/10350330.2014.996948 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem