- -

Multilingual Stance Detection in Social Media Political Debates

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Multilingual Stance Detection in Social Media Political Debates

Mostrar el registro completo del ítem

Lai, M.; Cignarella, AT.; Hernandez-Farias, DI.; Bosco, C.; Patti, V.; Rosso, P. (2020). Multilingual Stance Detection in Social Media Political Debates. Computer Speech & Language. 63:1-27. https://doi.org/10.1016/j.csl.2020.101075

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/166374

Ficheros en el ítem

Metadatos del ítem

Título: Multilingual Stance Detection in Social Media Political Debates
Autor: Lai, Mirko Cignarella, Alessandra Teresa Hernandez-Farias, Delia Irazu Bosco, Cristina Patti, Viviana Rosso, Paolo
Entidad UPV: Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació
Fecha difusión:
Resumen:
[EN] Stance Detection is the task of automatically determining whether the author of a text is in favor, against, or neutral towards a given target. In this paper we investigate the portability of tools performing this ...[+]
Palabras clave: Stance detection , Multilingual , Contextual features , Political debates , Twitter
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Computer Speech & Language. (issn: 0885-2308 )
DOI: 10.1016/j.csl.2020.101075
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.csl.2020.101075
Código del Proyecto:
info:eu-repo/grantAgreement/UNITO//S1618_L2_BOSC_01/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-096212-B-C31/ES/DESINFORMACION Y AGRESIVIDAD EN SOCIAL MEDIA: AGREGANDO INFORMACION Y ANALIZANDO EL LENGUAJE/
Agradecimientos:
Cristina Bosco and Viviana Patti are partially supported by Progetto di Ateneo/CSP 2016 (Immigrants, Hate and Prejudice in Social Media, S1618_L2_BOSC_01). The work of Paolo Rosso was partially funded bythe Spanish MICINN ...[+]
Tipo: Artículo

References

Balahur, A., & Turchi, M. (2014). Comparative experiments using supervised learning and machine translation for multilingual sentiment analysis. Computer Speech & Language, 28(1), 56-75. doi:10.1016/j.csl.2013.03.004

Blondel, V. D., Guillaume, J.-L., Lambiotte, R., & Lefebvre, E. (2008). Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment, 2008(10), P10008. doi:10.1088/1742-5468/2008/10/p10008

Boiy, E., & Moens, M.-F. (2008). A machine learning approach to sentiment analysis in multilingual Web texts. Information Retrieval, 12(5), 526-558. doi:10.1007/s10791-008-9070-z [+]
Balahur, A., & Turchi, M. (2014). Comparative experiments using supervised learning and machine translation for multilingual sentiment analysis. Computer Speech & Language, 28(1), 56-75. doi:10.1016/j.csl.2013.03.004

Blondel, V. D., Guillaume, J.-L., Lambiotte, R., & Lefebvre, E. (2008). Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment, 2008(10), P10008. doi:10.1088/1742-5468/2008/10/p10008

Boiy, E., & Moens, M.-F. (2008). A machine learning approach to sentiment analysis in multilingual Web texts. Information Retrieval, 12(5), 526-558. doi:10.1007/s10791-008-9070-z

DellaPosta, D., Shi, Y., & Macy, M. (2015). Why Do Liberals Drink Lattes? American Journal of Sociology, 120(5), 1473-1511. doi:10.1086/681254

Küçük, D., Can, F., 2019. A tweet dataset annotated for named entity recognition and stance detection. arXiv preprint arXiv:1901.04787. Available at: https://arxiv.org.

Mohammad, S. M., & Turney, P. D. (2012). CROWDSOURCING A WORD-EMOTION ASSOCIATION LEXICON. Computational Intelligence, 29(3), 436-465. doi:10.1111/j.1467-8640.2012.00460.x

Mohammad, S. M., Sobhani, P., & Kiritchenko, S. (2017). Stance and Sentiment in Tweets. ACM Transactions on Internet Technology, 17(3), 1-23. doi:10.1145/3003433

Raghavan, U. N., Albert, R., & Kumara, S. (2007). Near linear time algorithm to detect community structures in large-scale networks. Physical Review E, 76(3). doi:10.1103/physreve.76.036106

Vychegzhanin, S. V., & Kotelnikov, E. V. (2019). Stance Detection Based on Ensembles of Classifiers. Programming and Computer Software, 45(5), 228-240. doi:10.1134/s0361768819050074

West, D. M. (1991). Polling effects in election campaigns. Political Behavior, 13(2), 151-163. doi:10.1007/bf00992294

Whissell, C. (2009). Using the Revised Dictionary of Affect in Language to Quantify the Emotional Undertones of Samples of Natural Language. Psychological Reports, 105(2), 509-521. doi:10.2466/pr0.105.2.509-521

Zappavigna, M. (2015). Searchable talk: the linguistic functions of hashtags. Social Semiotics, 25(3), 274-291. doi:10.1080/10350330.2014.996948

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem