- -

Characterization of Locally Excited and Charge-Transfer States of the Anticancer Drug Lapatinib by Ultrafast Spectroscopy and Computational Studies

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Characterization of Locally Excited and Charge-Transfer States of the Anticancer Drug Lapatinib by Ultrafast Spectroscopy and Computational Studies

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Vayá Pérez, Ignacio es_ES
dc.contributor.author Andreu Ros, María Inmaculada es_ES
dc.contributor.author Lence, Emilio es_ES
dc.contributor.author González-Bello, Concepción es_ES
dc.contributor.author Cuquerella Alabort, Maria Consuelo es_ES
dc.contributor.author Navarrete-Miguel, Miriam es_ES
dc.contributor.author Roca-Sanjuán, Daniel es_ES
dc.contributor.author Miranda Alonso, Miguel Ángel es_ES
dc.date.accessioned 2021-05-14T12:41:21Z
dc.date.available 2021-05-14T12:41:21Z
dc.date.issued 2020-12-04 es_ES
dc.identifier.issn 0947-6539 es_ES
dc.identifier.uri http://hdl.handle.net/10251/166376
dc.description This is the peer reviewed version of the following article: I. Vayá, I. Andreu, E. Lence, C. González-Bello, M. Consuelo Cuquerella, M. Navarrete-Miguel, D. Roca-Sanjuán, M. A. Miranda, Chem. Eur. J. 2020, 26, 15922, which has been published in final form at https://doi.org/10.1002/chem.202001336. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. es_ES
dc.description.abstract [EN] Lapatinib (LAP) is an anticancer drug, which is metabolized to theN- and O-dealkylated products (N-LAP andO-LAP, respectively). In view of the photosensitizing potential of related drugs, a complete experimental and theoretical study has been performed on LAP,N-LAP andO-LAP, both in solution and upon complexation with human serum albumin (HSA). In organic solvents, coplanar locally excited (LE) emissive states are generated; they rapidly evolve towards twisted intramolecular charge-transfer (ICT) states. By contrast, within HSA only LE states are detected. Accordingly, femtosecond transient absorption reveals a very fast switching (ca. 2 ps) from LE (lambda(max)=550 nm) to ICT states (lambda(max)=480 nm) in solution, whereas within HSA the LE species become stabilized and live much longer (up to the ns scale). Interestingly, molecular dynamics simulation studies confirm that the coplanar orientation is preferred for LAP (or to a lesser extentN-LAP) within HSA, explaining the experimental results. es_ES
dc.description.sponsorship Financial support from the Spanish Government (RYC-2015-17737, CTQ2017-89416-R, ISCIII grants RD16/0006/0004, PI16/01877 and CPII16/00052, SAF2016-75638-R, RYC-2015-19234, CTQ2017-87054-C2-2-P, and MDM-2015-0538), Conselleria d'Educacio Cultura i Esport (PROMETEO/2017/075), the Xunta de Galicia [ED431B 2018/04 and Centro singular de investigacion de Galicia accreditation 2019-2022 (ED431G 2019/03)] and the European Regional Development Fund is gratefully acknowledged. We thank the Centro de Supercomputacion de Galicia (CESGA) for use of the Finis Terrae computer. es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation ISCIII/RD16/0006/0004 es_ES
dc.relation MINISTERIO DE ECONOMIA Y EMPRESA/RYC-2015-17737 es_ES
dc.relation.ispartof Chemistry - A European Journal es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Anticancer drugs es_ES
dc.subject Femtosecond transient absorption es_ES
dc.subject Fluorescence es_ES
dc.subject Lapatinib es_ES
dc.subject Molecular dynamics simulations es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Characterization of Locally Excited and Charge-Transfer States of the Anticancer Drug Lapatinib by Ultrafast Spectroscopy and Computational Studies es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/chem.202001336 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/CTQ2017-87054-C2-2-P/ES/FOTOFISICA DE SISTEMAS ORGANICOS DE TRANSFERENCIA DE CARGA INNOVADORES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SAF2016-75638-R/ES/DESARROLLO DE NUEVOS FARMACOS PARA EL TRATAMIENTO DE LAS INFECCIONES BACTERIANAS MULTIRESISTENTES: APROXIMACIONES QUE INCIDEN SOBRE VIABILIDAD, RESISTENCIA Y VIRULENCIA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MDM-2015-0538/ES/INSTITUTO DE CIENCIA MOLECULAR/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//RYC-2015-19234/ES/RYC-2015-19234/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Xunta de Galicia//ED431B 2018%2F04/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ISCIII//CP1116%2F00052/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Xunta de Galicia//ED431G 2019%2F03/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//PI16%2F01877/ES/Estrategia integrada de fotodiagnóstico combinando evaluación clínica, ensayos biológicos y estudios mecanísticos/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2017%2F075/ES/Reacciones fotoquímicas de biomoléculas/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/CTQ2017-89416-R/ES/FUNCIONALIZACION DE NANOPARTICULAS DE ORO CON MARCADORES BIOLOGICOS Y SENSIBILIZADORES DE OXIGENO SINGLETE PARA SU USO EN BIOMEDICINA/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Vayá Pérez, I.; Andreu Ros, MI.; Lence, E.; González-Bello, C.; Cuquerella Alabort, MC.; Navarrete-Miguel, M.; Roca-Sanjuán, D.... (2020). Characterization of Locally Excited and Charge-Transfer States of the Anticancer Drug Lapatinib by Ultrafast Spectroscopy and Computational Studies. Chemistry - A European Journal. 26(68):15922-15930. https://doi.org/10.1002/chem.202001336 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/chem.202001336 es_ES
dc.description.upvformatpinicio 15922 es_ES
dc.description.upvformatpfin 15930 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 26 es_ES
dc.description.issue 68 es_ES
dc.identifier.pmid 32585059 es_ES
dc.relation.pasarela S\426409 es_ES
dc.contributor.funder Xunta de Galicia es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Instituto de Salud Carlos III es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Ministerio de Ciencia, Innovación y Universidades es_ES
dc.description.references Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., & Jemal, A. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 68(6), 394-424. doi:10.3322/caac.21492 es_ES
dc.description.references Nicholson, R. ., Gee, J. M. ., & Harper, M. . (2001). EGFR and cancer prognosis. European Journal of Cancer, 37, 9-15. doi:10.1016/s0959-8049(01)00231-3 es_ES
dc.description.references Yashiro, M., Qiu, H., Hasegawa, T., Zhang, X., Matsuzaki, T., & Hirakawa, K. (2011). An EGFR inhibitor enhances the efficacy of SN38, an active metabolite of irinotecan, in SN38-refractory gastric carcinoma cells. British Journal of Cancer, 105(10), 1522-1532. doi:10.1038/bjc.2011.397 es_ES
dc.description.references Gonzalez, G., & Lage, A. (2007). Cancer Vaccines for Hormone/Growth Factor Immune Deprivation:A Feasible Approach for Cancer Treatment. Current Cancer Drug Targets, 7(3), 229-241. doi:10.2174/156800907780618310 es_ES
dc.description.references Sigismund, S., Avanzato, D., & Lanzetti, L. (2017). Emerging functions of the EGFR in cancer. Molecular Oncology, 12(1), 3-20. doi:10.1002/1878-0261.12155 es_ES
dc.description.references Thomas, R., & Weihua, Z. (2019). Rethink of EGFR in Cancer With Its Kinase Independent Function on Board. Frontiers in Oncology, 9. doi:10.3389/fonc.2019.00800 es_ES
dc.description.references MEDINA, P., & GOODIN, S. (2008). Lapatinib: A dual inhibitor of human epidermal growth factor receptor tyrosine kinases. Clinical Therapeutics, 30(8), 1426-1447. doi:10.1016/j.clinthera.2008.08.008 es_ES
dc.description.references Nolting, M., Schneider-Merck, T., & Trepel, M. (2014). Lapatinib. Small Molecules in Oncology, 125-143. doi:10.1007/978-3-642-54490-3_7 es_ES
dc.description.references Schroeder, R., Stevens, C., & Sridhar, J. (2014). Small Molecule Tyrosine Kinase Inhibitors of ErbB2/HER2/Neu in the Treatment of Aggressive Breast Cancer. Molecules, 19(9), 15196-15212. doi:10.3390/molecules190915196 es_ES
dc.description.references Spector, N. L., Xia, W., Burris, H., Hurwitz, H., Dees, E. C., Dowlati, A., … Bacus, S. (2005). Study of the Biologic Effects of Lapatinib, a Reversible Inhibitor of ErbB1 and ErbB2 Tyrosine Kinases, on Tumor Growth and Survival Pathways in Patients With Advanced Malignancies. Journal of Clinical Oncology, 23(11), 2502-2512. doi:10.1200/jco.2005.12.157 es_ES
dc.description.references Krasner, J. (1972). Drug-Protein Interaction. Pediatric Clinics of North America, 19(1), 51-63. doi:10.1016/s0031-3955(16)32666-9 es_ES
dc.description.references Peters, T. (1995). Ligand Binding by Albumin. All About Albumin, 76-132. doi:10.1016/b978-012552110-9/50005-2 es_ES
dc.description.references Molins-Molina, O., Lence, E., Limones-Herrero, D., González-Bello, C., Miranda, M. A., & Jiménez, M. C. (2019). Identification of a common recognition center for a photoactive non-steroidal antiinflammatory drug in serum albumins of different species. Organic Chemistry Frontiers, 6(1), 99-109. doi:10.1039/c8qo01045e es_ES
dc.description.references Molins-Molina, O., Pérez-Ruiz, R., Lence, E., González-Bello, C., Miranda, M. A., & Jiménez, M. C. (2019). Photobinding of Triflusal to Human Serum Albumin Investigated by Fluorescence, Proteomic Analysis, and Computational Studies. Frontiers in Pharmacology, 10. doi:10.3389/fphar.2019.01028 es_ES
dc.description.references Monteiro, A. F., Rato, M., & Martins, C. (2016). Drug-induced photosensitivity: Photoallergic and phototoxic reactions. Clinics in Dermatology, 34(5), 571-581. doi:10.1016/j.clindermatol.2016.05.006 es_ES
dc.description.references Vayá, I., Andreu, I., Monje, V. T., Jiménez, M. C., & Miranda, M. A. (2015). Mechanistic Studies on the Photoallergy Mediated by Fenofibric Acid: Photoreactivity with Serum Albumins. Chemical Research in Toxicology, 29(1), 40-46. doi:10.1021/acs.chemrestox.5b00357 es_ES
dc.description.references Vayá, I., Lhiaubet-Vallet, V., Jiménez, M. C., & Miranda, M. A. (2014). Photoactive assemblies of organic compounds and biomolecules: drug–protein supramolecular systems. Chem. Soc. Rev., 43(12), 4102-4122. doi:10.1039/c3cs60413f es_ES
dc.description.references Ishikawa, T., Kamide, R., & Niimura, M. (1994). Photoleukomelanodermatitis (Kobori) Induced by Afloqualone. The Journal of Dermatology, 21(6), 430-433. doi:10.1111/j.1346-8138.1994.tb01768.x es_ES
dc.description.references Kabir, M. Z., Mukarram, A. K., Mohamad, S. B., Alias, Z., & Tayyab, S. (2016). Characterization of the binding of an anticancer drug, lapatinib to human serum albumin. Journal of Photochemistry and Photobiology B: Biology, 160, 229-239. doi:10.1016/j.jphotobiol.2016.04.005 es_ES
dc.description.references Shen, G.-F., Liu, T.-T., Wang, Q., Jiang, M., & Shi, J.-H. (2015). Spectroscopic and molecular docking studies of binding interaction of gefitinib, lapatinib and sunitinib with bovine serum albumin (BSA). Journal of Photochemistry and Photobiology B: Biology, 153, 380-390. doi:10.1016/j.jphotobiol.2015.10.023 es_ES
dc.description.references Wilson, J. N., Liu, W., Brown, A. S., & Landgraf, R. (2015). Binding-induced, turn-on fluorescence of the EGFR/ERBB kinase inhibitor, lapatinib. Organic & Biomolecular Chemistry, 13(17), 5006-5011. doi:10.1039/c5ob00239g es_ES
dc.description.references Li, M.-D., Yan, Z., Zhu, R., Phillips, D. L., Aparici-Espert, I., Lhiaubet-Vallet, V., & Miranda, M. A. (2018). Enhanced Drug Photosafety by Interchromophoric Interaction Owing to Intramolecular Charge Separation. Chemistry - A European Journal, 24(25), 6654-6659. doi:10.1002/chem.201800716 es_ES
dc.description.references Vayá, I., Bonancía, P., Jiménez, M. C., Markovitsi, D., Gustavsson, T., & Miranda, M. A. (2013). Excited state interactions between flurbiprofen and tryptophan in drug–protein complexes and in model dyads. Fluorescence studies from the femtosecond to the nanosecond time domains. Physical Chemistry Chemical Physics, 15(13), 4727. doi:10.1039/c3cp43847c es_ES
dc.description.references Andersson, K., Malmqvist, P., & Roos, B. O. (1992). Second‐order perturbation theory with a complete active space self‐consistent field reference function. The Journal of Chemical Physics, 96(2), 1218-1226. doi:10.1063/1.462209 es_ES
dc.description.references Andersson, K., Malmqvist, P. A., Roos, B. O., Sadlej, A. J., & Wolinski, K. (1990). Second-order perturbation theory with a CASSCF reference function. The Journal of Physical Chemistry, 94(14), 5483-5488. doi:10.1021/j100377a012 es_ES
dc.description.references Roca-Sanjuán, D., Aquilante, F., & Lindh, R. (2011). Multiconfiguration second-order perturbation theory approach to strong electron correlation in chemistry and photochemistry. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2(4), 585-603. doi:10.1002/wcms.97 es_ES
dc.description.references In:http://www.ccdc.cam.ac.uk/solutions/csd-discovery/components/gold/(accessed January 22 2020). es_ES
dc.description.references Zunszain, P. A., Ghuman, J., Komatsu, T., Tsuchida, E., & Curry, S. (2003). BMC Structural Biology, 3(1), 6. doi:10.1186/1472-6807-3-6 es_ES
dc.description.references D. A. Case R. M. Betz D. S. Cerutti T. E. Cheatham T. A. Darden R. E. Duke T. J. Giese H. Gohlke A. W. Goetz N. Homeyer S. Izadi P. Janowski J. J. Kaus A. Kovalenko T. S. Lee S. LeGrand P. Li C. Lin T. Luchko R. Luo B. Madej D. Mermelstein K. M. M. Merz G. Monard H. Nguyen H. Nguyen I. Omelyan A. Onufriev D. R. R. Roe A. Roitberg C. Sagui C. L. Simmerling W. M. Botello-Smith J. Swails R. Walker J. Wang R. M. Wolf X. Wu L. Xiao P. A. Kollman AMBER2016 University of California San Francisco. es_ES
dc.description.references Wybranowski, T., Cyrankiewicz, M., Ziomkowska, B., & Kruszewski, S. (2008). The HSA affinity of warfarin and flurbiprofen determined by fluorescence anisotropy measurements of camptothecin. Biosystems, 94(3), 258-262. doi:10.1016/j.biosystems.2008.05.034 es_ES
dc.description.references Itoh, T., Saura, Y., Tsuda, Y., & Yamada, H. (1997). Stereoselectivity and enantiomer-enantiomer interactions in the binding of ibuprofen to human serum albumin. Chirality, 9(7), 643-649. doi:10.1002/(sici)1520-636x(1997)9:7<643::aid-chir1>3.0.co;2-8 es_ES
dc.description.references Pérez-Ruíz, R., Lence, E., Andreu, I., Limones-Herrero, D., González-Bello, C., Miranda, M. A., & Jiménez, M. C. (2017). A New Pathway for Protein Haptenation by β-Lactams. Chemistry - A European Journal, 23(56), 13986-13994. doi:10.1002/chem.201702643 es_ES
dc.description.references Gaussian 09 Revision D.01 M. J. Frisch G. W. Trucks H. B. Schlegel G. E. Scuseria M. A. Robb J. R. Cheeseman G. Scalmani V. Barone B. Mennucci G. A. Petersson H. Nakatsuji M. Caricato X. Li H. P. Hratchian A. F. Izmaylov J. Bloino G. Zheng J. L. Sonnenberg M. Hada M. Ehara K. Toyota R. Fukuda J. Hasegawa M. Ishida T. Nakajima Y. Honda O. Kitao H. Nakai T. Vreven J. J. A. Montgomery J. E. Peralta F. Ogliaro M. Bearpark J. J. Heyd E. Brothers K. N. Kudin V. N. Staroverov R. Kobayashi J. Normand K. Raghavachari A. Rendell J. C. Burant S. S. Iyengar J. Tomasi M. Cossi N. Rega J. M. Millam M. Klene J. E. Knox J. B. Cross V. Bakken C. Adamo J. Jaramillo R. Gomperts R. E. Stratmann O. Yazyev A. J. Austin R. Cammi C. Pomelli J. W. Ochterski R. L. Martin K. Morokuma V. G. Zakrzewski G. A. Voth P. Salvador J. J. Dannenberg S. Dapprich A. D. Daniels Ö. Farkas J. B. Foresman J. V. Ortiz J. Cioslowski D. J. Fox 2013 Wallingford CT. es_ES
dc.description.references Aquilante, F., Autschbach, J., Carlson, R. K., Chibotaru, L. F., Delcey, M. G., De Vico, L., … Lindh, R. (2015). Molcas 8: New capabilities for multiconfigurational quantum chemical calculations across the periodic table. Journal of Computational Chemistry, 37(5), 506-541. doi:10.1002/jcc.24221 es_ES
dc.description.references Forsberg, N., & Malmqvist, P.-Å. (1997). Multiconfiguration perturbation theory with imaginary level shift. Chemical Physics Letters, 274(1-3), 196-204. doi:10.1016/s0009-2614(97)00669-6 es_ES
dc.description.references W. L. DeLano in The PyMOL Molecular Graphics System.http://www.pymol.org/. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem