Fok, L., Ambati, M., & Zhang, X. (2008). Acoustic Metamaterials. MRS Bulletin, 33(10), 931-934. doi:10.1557/mrs2008.202
Christensen, J., Romero-García, V., Picó, R., Cebrecos, A., de Abajo, F. J. G., Mortensen, N. A., … Sánchez-Morcillo, V. J. (2014). Extraordinary absorption of sound in porous lamella-crystals. Scientific Reports, 4(1). doi:10.1038/srep04674
Liang, Z., Willatzen, M., Li, J., & Christensen, J. (2012). Tunable acoustic double negativity metamaterial. Scientific Reports, 2(1). doi:10.1038/srep00859
[+]
Fok, L., Ambati, M., & Zhang, X. (2008). Acoustic Metamaterials. MRS Bulletin, 33(10), 931-934. doi:10.1557/mrs2008.202
Christensen, J., Romero-García, V., Picó, R., Cebrecos, A., de Abajo, F. J. G., Mortensen, N. A., … Sánchez-Morcillo, V. J. (2014). Extraordinary absorption of sound in porous lamella-crystals. Scientific Reports, 4(1). doi:10.1038/srep04674
Liang, Z., Willatzen, M., Li, J., & Christensen, J. (2012). Tunable acoustic double negativity metamaterial. Scientific Reports, 2(1). doi:10.1038/srep00859
Mei, J., Ma, G., Yang, M., Yang, Z., Wen, W., & Sheng, P. (2012). Dark acoustic metamaterials as super absorbers for low-frequency sound. Nature Communications, 3(1). doi:10.1038/ncomms1758
Lee, S. H., Park, C. M., Seo, Y. M., Wang, Z. G., & Kim, C. K. (2010). Composite Acoustic Medium with Simultaneously Negative Density and Modulus. Physical Review Letters, 104(5). doi:10.1103/physrevlett.104.054301
Fleury, R., Sounas, D. L., Sieck, C. F., Haberman, M. R., & Alù, A. (2014). Sound Isolation and Giant Linear Nonreciprocity in a Compact Acoustic Circulator. Science, 343(6170), 516-519. doi:10.1126/science.1246957
Cheng, Y., Xu, J. Y., & Liu, X. J. (2008). One-dimensional structured ultrasonic metamaterials with simultaneously negative dynamic density and modulus. Physical Review B, 77(4). doi:10.1103/physrevb.77.045134
Cheng, Y., Yang, F., Xu, J. Y., & Liu, X. J. (2008). A multilayer structured acoustic cloak with homogeneous isotropic materials. Applied Physics Letters, 92(15), 151913. doi:10.1063/1.2903500
Sanchis, L., García-Chocano, V. M., Llopis-Pontiveros, R., Climente, A., Martínez-Pastor, J., Cervera, F., & Sánchez-Dehesa, J. (2013). Three-Dimensional Axisymmetric Cloak Based on the Cancellation of Acoustic Scattering from a Sphere. Physical Review Letters, 110(12). doi:10.1103/physrevlett.110.124301
Farhat, M., Chen, P.-Y., Bağcı, H., Enoch, S., Guenneau, S., & Alù, A. (2014). Platonic Scattering Cancellation for Bending Waves in a Thin Plate. Scientific Reports, 4(1). doi:10.1038/srep04644
Fang, N., Xi, D., Xu, J., Ambati, M., Srituravanich, W., Sun, C., & Zhang, X. (2006). Ultrasonic metamaterials with negative modulus. Nature Materials, 5(6), 452-456. doi:10.1038/nmat1644
Shen, C., Xu, J., Fang, N. X., & Jing, Y. (2014). Anisotropic Complementary Acoustic Metamaterial for Canceling out Aberrating Layers. Physical Review X, 4(4). doi:10.1103/physrevx.4.041033
Li, Y., Liang, B., Zou, X., & Cheng, J. (2013). Extraordinary acoustic transmission through ultrathin acoustic metamaterials by coiling up space. Applied Physics Letters, 103(6), 063509. doi:10.1063/1.4817925
Tang, K., Qiu, C., Lu, J., Ke, M., & Liu, Z. (2015). Focusing and directional beaming effects of airborne sound through a planar lens with zigzag slits. Journal of Applied Physics, 117(2), 024503. doi:10.1063/1.4905910
Cai, X., Guo, Q., Hu, G., & Yang, J. (2014). Ultrathin low-frequency sound absorbing panels based on coplanar spiral tubes or coplanar Helmholtz resonators. Applied Physics Letters, 105(12), 121901. doi:10.1063/1.4895617
Leroy, V., Strybulevych, A., Lanoy, M., Lemoult, F., Tourin, A., & Page, J. H. (2015). Superabsorption of acoustic waves with bubble metascreens. Physical Review B, 91(2). doi:10.1103/physrevb.91.020301
Hu, X., Chan, C. T., & Zi, J. (2005). Two-dimensional sonic crystals with Helmholtz resonators. Physical Review E, 71(5). doi:10.1103/physreve.71.055601
Karimi, M., Croaker, P., & Kessissoglou, N. (2017). Acoustic scattering for 3D multi-directional periodic structures using the boundary element method. The Journal of the Acoustical Society of America, 141(1), 313-323. doi:10.1121/1.4973908
Yang, X. W., Lee, J. S., & Kim, Y. Y. (2016). Effective mass density based topology optimization of locally resonant acoustic metamaterials for bandgap maximization. Journal of Sound and Vibration, 383, 89-107. doi:10.1016/j.jsv.2016.07.022
Chen, Y., & Wang, L. (2014). Periodic co-continuous acoustic metamaterials with overlapping locally resonant and Bragg band gaps. Applied Physics Letters, 105(19), 191907. doi:10.1063/1.4902129
Theocharis, G., Richoux, O., García, V. R., Merkel, A., & Tournat, V. (2014). Limits of slow sound propagation and transparency in lossy, locally resonant periodic structures. New Journal of Physics, 16(9), 093017. doi:10.1088/1367-2630/16/9/093017
Lardeau, A., Groby, J.-P., & Romero-García, V. (2016). Broadband Transmission Loss Using the Overlap of Resonances in 3D Sonic Crystals. Crystals, 6(5), 51. doi:10.3390/cryst6050051
Liu, Z., Zhang, X., Mao, Y., Zhu, Y. Y., Yang, Z., Chan, C. T., & Sheng, P. (2000). Locally Resonant Sonic Materials. Science, 289(5485), 1734-1736. doi:10.1126/science.289.5485.1734
Park, C. M., & Lee, S. H. (2013). Propagation of acoustic waves in a metamaterial with a refractive index of near zero. Applied Physics Letters, 102(24), 241906. doi:10.1063/1.4811742
Wang, T.-T., Wang, Y.-F., Wang, Y.-S., & Laude, V. (2018). Evanescent-wave tuning of a locally resonant sonic crystal. Applied Physics Letters, 113(23), 231901. doi:10.1063/1.5066058
Yuan, B., Humphrey, V. F., Wen, J., & Wen, X. (2013). On the coupling of resonance and Bragg scattering effects in three-dimensional locally resonant sonic materials. Ultrasonics, 53(7), 1332-1343. doi:10.1016/j.ultras.2013.03.019
Montiel, F., Chung, H., Karimi, M., & Kessissoglou, N. (2017). An analytical and numerical investigation of acoustic attenuation by a finite sonic crystal. Wave Motion, 70, 135-151. doi:10.1016/j.wavemoti.2016.12.002
Sigalas, M. M., Economou, E. N., & Kafesaki, M. (1994). Spectral gaps for electromagnetic and scalar waves: Possible explanation for certain differences. Physical Review B, 50(5), 3393-3396. doi:10.1103/physrevb.50.3393
Economou, E. N., & Sigalas, M. M. (1993). Classical wave propagation in periodic structures: Cermet versus network topology. Physical Review B, 48(18), 13434-13438. doi:10.1103/physrevb.48.13434
Berenger, J.-P. (1994). A perfectly matched layer for the absorption of electromagnetic waves. Journal of Computational Physics, 114(2), 185-200. doi:10.1006/jcph.1994.1159
[-]