Mostrar el registro sencillo del ítem
dc.contributor.author | Peiró-Torres, María Del Pilar | es_ES |
dc.contributor.author | Castiñeira Ibáñez, Sergio | es_ES |
dc.contributor.author | Redondo, Javier | es_ES |
dc.contributor.author | Sánchez Pérez, Juan Vicente | es_ES |
dc.date.accessioned | 2021-05-18T03:30:53Z | |
dc.date.available | 2021-05-18T03:30:53Z | |
dc.date.issued | 2019-04-29 | es_ES |
dc.identifier.issn | 0003-6951 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/166455 | |
dc.description.abstract | [EN] The emergence of materials artificially designed to control the transmission of waves, generally called metamaterials, has been a hot topic in the field of acoustics for several years. The design of these metamaterials is usually carried out by overlapping different wave control mechanisms. An example of this trend is the so-called Locally Resonant Sonic Materials, being one of them the Phononic Crystals with a local resonant structure. These metamaterials are formed by sets of isolated resonators in such a way that the control of the waves is carried out by resonances and by the existence of Bragg bandgaps, which appear due to the ordered distribution of the resonators. Their use is based on the creation of resonance peaks to form additional nontransmission bands mainly in the low frequency regime, usually below the first Bragg frequency. The coupling of both gaps has been made in some cases, but it is not always so. In this work, using a periodic structure formed by Helmholtz resonators, we report the existence of interferences between the resonances and the Bragg bandgaps when they are working in nearby frequency ranges, so that they prevent the coupling of both gaps. We explain their physical principles and present possible solutions to mitigate them. To this end, we have developed numerical models based on the finite element method, and the results have been verified by means of accurate experimental results obtained under controlled conditions. Published under license by AIP Publishing. | es_ES |
dc.description.sponsorship | M.P.P.T. is grateful for the support of pre-doctoral Grant by the "Ministerio de Economia y Competitividad" of Spain through reference No. DI-15-08100. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | American Institute of Physics | es_ES |
dc.relation.ispartof | Applied Physics Letters | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Metamaterials | es_ES |
dc.subject | Helmhotz resonators | es_ES |
dc.subject.classification | FISICA APLICADA | es_ES |
dc.title | Interferences in Locally Resonant Sonic Metamaterials Formed from Helmholtz Resonators | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1063/1.5092375 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//DI-15-08100/ES/DI-15-08100/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada | es_ES |
dc.description.bibliographicCitation | Peiró-Torres, MDP.; Castiñeira Ibáñez, S.; Redondo, J.; Sánchez Pérez, JV. (2019). Interferences in Locally Resonant Sonic Metamaterials Formed from Helmholtz Resonators. Applied Physics Letters. 114(17):1-4. https://doi.org/10.1063/1.5092375 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1063/1.5092375 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 4 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 114 | es_ES |
dc.description.issue | 17 | es_ES |
dc.relation.pasarela | S\392395 | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Fok, L., Ambati, M., & Zhang, X. (2008). Acoustic Metamaterials. MRS Bulletin, 33(10), 931-934. doi:10.1557/mrs2008.202 | es_ES |
dc.description.references | Christensen, J., Romero-García, V., Picó, R., Cebrecos, A., de Abajo, F. J. G., Mortensen, N. A., … Sánchez-Morcillo, V. J. (2014). Extraordinary absorption of sound in porous lamella-crystals. Scientific Reports, 4(1). doi:10.1038/srep04674 | es_ES |
dc.description.references | Liang, Z., Willatzen, M., Li, J., & Christensen, J. (2012). Tunable acoustic double negativity metamaterial. Scientific Reports, 2(1). doi:10.1038/srep00859 | es_ES |
dc.description.references | Mei, J., Ma, G., Yang, M., Yang, Z., Wen, W., & Sheng, P. (2012). Dark acoustic metamaterials as super absorbers for low-frequency sound. Nature Communications, 3(1). doi:10.1038/ncomms1758 | es_ES |
dc.description.references | Lee, S. H., Park, C. M., Seo, Y. M., Wang, Z. G., & Kim, C. K. (2010). Composite Acoustic Medium with Simultaneously Negative Density and Modulus. Physical Review Letters, 104(5). doi:10.1103/physrevlett.104.054301 | es_ES |
dc.description.references | Fleury, R., Sounas, D. L., Sieck, C. F., Haberman, M. R., & Alù, A. (2014). Sound Isolation and Giant Linear Nonreciprocity in a Compact Acoustic Circulator. Science, 343(6170), 516-519. doi:10.1126/science.1246957 | es_ES |
dc.description.references | Cheng, Y., Xu, J. Y., & Liu, X. J. (2008). One-dimensional structured ultrasonic metamaterials with simultaneously negative dynamic density and modulus. Physical Review B, 77(4). doi:10.1103/physrevb.77.045134 | es_ES |
dc.description.references | Cheng, Y., Yang, F., Xu, J. Y., & Liu, X. J. (2008). A multilayer structured acoustic cloak with homogeneous isotropic materials. Applied Physics Letters, 92(15), 151913. doi:10.1063/1.2903500 | es_ES |
dc.description.references | Sanchis, L., García-Chocano, V. M., Llopis-Pontiveros, R., Climente, A., Martínez-Pastor, J., Cervera, F., & Sánchez-Dehesa, J. (2013). Three-Dimensional Axisymmetric Cloak Based on the Cancellation of Acoustic Scattering from a Sphere. Physical Review Letters, 110(12). doi:10.1103/physrevlett.110.124301 | es_ES |
dc.description.references | Farhat, M., Chen, P.-Y., Bağcı, H., Enoch, S., Guenneau, S., & Alù, A. (2014). Platonic Scattering Cancellation for Bending Waves in a Thin Plate. Scientific Reports, 4(1). doi:10.1038/srep04644 | es_ES |
dc.description.references | Fang, N., Xi, D., Xu, J., Ambati, M., Srituravanich, W., Sun, C., & Zhang, X. (2006). Ultrasonic metamaterials with negative modulus. Nature Materials, 5(6), 452-456. doi:10.1038/nmat1644 | es_ES |
dc.description.references | Shen, C., Xu, J., Fang, N. X., & Jing, Y. (2014). Anisotropic Complementary Acoustic Metamaterial for Canceling out Aberrating Layers. Physical Review X, 4(4). doi:10.1103/physrevx.4.041033 | es_ES |
dc.description.references | Li, Y., Liang, B., Zou, X., & Cheng, J. (2013). Extraordinary acoustic transmission through ultrathin acoustic metamaterials by coiling up space. Applied Physics Letters, 103(6), 063509. doi:10.1063/1.4817925 | es_ES |
dc.description.references | Tang, K., Qiu, C., Lu, J., Ke, M., & Liu, Z. (2015). Focusing and directional beaming effects of airborne sound through a planar lens with zigzag slits. Journal of Applied Physics, 117(2), 024503. doi:10.1063/1.4905910 | es_ES |
dc.description.references | Cai, X., Guo, Q., Hu, G., & Yang, J. (2014). Ultrathin low-frequency sound absorbing panels based on coplanar spiral tubes or coplanar Helmholtz resonators. Applied Physics Letters, 105(12), 121901. doi:10.1063/1.4895617 | es_ES |
dc.description.references | Leroy, V., Strybulevych, A., Lanoy, M., Lemoult, F., Tourin, A., & Page, J. H. (2015). Superabsorption of acoustic waves with bubble metascreens. Physical Review B, 91(2). doi:10.1103/physrevb.91.020301 | es_ES |
dc.description.references | Hu, X., Chan, C. T., & Zi, J. (2005). Two-dimensional sonic crystals with Helmholtz resonators. Physical Review E, 71(5). doi:10.1103/physreve.71.055601 | es_ES |
dc.description.references | Karimi, M., Croaker, P., & Kessissoglou, N. (2017). Acoustic scattering for 3D multi-directional periodic structures using the boundary element method. The Journal of the Acoustical Society of America, 141(1), 313-323. doi:10.1121/1.4973908 | es_ES |
dc.description.references | Yang, X. W., Lee, J. S., & Kim, Y. Y. (2016). Effective mass density based topology optimization of locally resonant acoustic metamaterials for bandgap maximization. Journal of Sound and Vibration, 383, 89-107. doi:10.1016/j.jsv.2016.07.022 | es_ES |
dc.description.references | Chen, Y., & Wang, L. (2014). Periodic co-continuous acoustic metamaterials with overlapping locally resonant and Bragg band gaps. Applied Physics Letters, 105(19), 191907. doi:10.1063/1.4902129 | es_ES |
dc.description.references | Theocharis, G., Richoux, O., García, V. R., Merkel, A., & Tournat, V. (2014). Limits of slow sound propagation and transparency in lossy, locally resonant periodic structures. New Journal of Physics, 16(9), 093017. doi:10.1088/1367-2630/16/9/093017 | es_ES |
dc.description.references | Lardeau, A., Groby, J.-P., & Romero-García, V. (2016). Broadband Transmission Loss Using the Overlap of Resonances in 3D Sonic Crystals. Crystals, 6(5), 51. doi:10.3390/cryst6050051 | es_ES |
dc.description.references | Liu, Z., Zhang, X., Mao, Y., Zhu, Y. Y., Yang, Z., Chan, C. T., & Sheng, P. (2000). Locally Resonant Sonic Materials. Science, 289(5485), 1734-1736. doi:10.1126/science.289.5485.1734 | es_ES |
dc.description.references | Park, C. M., & Lee, S. H. (2013). Propagation of acoustic waves in a metamaterial with a refractive index of near zero. Applied Physics Letters, 102(24), 241906. doi:10.1063/1.4811742 | es_ES |
dc.description.references | Wang, T.-T., Wang, Y.-F., Wang, Y.-S., & Laude, V. (2018). Evanescent-wave tuning of a locally resonant sonic crystal. Applied Physics Letters, 113(23), 231901. doi:10.1063/1.5066058 | es_ES |
dc.description.references | Yuan, B., Humphrey, V. F., Wen, J., & Wen, X. (2013). On the coupling of resonance and Bragg scattering effects in three-dimensional locally resonant sonic materials. Ultrasonics, 53(7), 1332-1343. doi:10.1016/j.ultras.2013.03.019 | es_ES |
dc.description.references | Montiel, F., Chung, H., Karimi, M., & Kessissoglou, N. (2017). An analytical and numerical investigation of acoustic attenuation by a finite sonic crystal. Wave Motion, 70, 135-151. doi:10.1016/j.wavemoti.2016.12.002 | es_ES |
dc.description.references | Sigalas, M. M., Economou, E. N., & Kafesaki, M. (1994). Spectral gaps for electromagnetic and scalar waves: Possible explanation for certain differences. Physical Review B, 50(5), 3393-3396. doi:10.1103/physrevb.50.3393 | es_ES |
dc.description.references | Economou, E. N., & Sigalas, M. M. (1993). Classical wave propagation in periodic structures: Cermet versus network topology. Physical Review B, 48(18), 13434-13438. doi:10.1103/physrevb.48.13434 | es_ES |
dc.description.references | Berenger, J.-P. (1994). A perfectly matched layer for the absorption of electromagnetic waves. Journal of Computational Physics, 114(2), 185-200. doi:10.1006/jcph.1994.1159 | es_ES |