- -

Interferences in Locally Resonant Sonic Metamaterials Formed from Helmholtz Resonators

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Interferences in Locally Resonant Sonic Metamaterials Formed from Helmholtz Resonators

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Peiró-Torres, María Del Pilar es_ES
dc.contributor.author Castiñeira Ibáñez, Sergio es_ES
dc.contributor.author Redondo, Javier es_ES
dc.contributor.author Sánchez Pérez, Juan Vicente es_ES
dc.date.accessioned 2021-05-18T03:30:53Z
dc.date.available 2021-05-18T03:30:53Z
dc.date.issued 2019-04-29 es_ES
dc.identifier.issn 0003-6951 es_ES
dc.identifier.uri http://hdl.handle.net/10251/166455
dc.description.abstract [EN] The emergence of materials artificially designed to control the transmission of waves, generally called metamaterials, has been a hot topic in the field of acoustics for several years. The design of these metamaterials is usually carried out by overlapping different wave control mechanisms. An example of this trend is the so-called Locally Resonant Sonic Materials, being one of them the Phononic Crystals with a local resonant structure. These metamaterials are formed by sets of isolated resonators in such a way that the control of the waves is carried out by resonances and by the existence of Bragg bandgaps, which appear due to the ordered distribution of the resonators. Their use is based on the creation of resonance peaks to form additional nontransmission bands mainly in the low frequency regime, usually below the first Bragg frequency. The coupling of both gaps has been made in some cases, but it is not always so. In this work, using a periodic structure formed by Helmholtz resonators, we report the existence of interferences between the resonances and the Bragg bandgaps when they are working in nearby frequency ranges, so that they prevent the coupling of both gaps. We explain their physical principles and present possible solutions to mitigate them. To this end, we have developed numerical models based on the finite element method, and the results have been verified by means of accurate experimental results obtained under controlled conditions. Published under license by AIP Publishing. es_ES
dc.description.sponsorship M.P.P.T. is grateful for the support of pre-doctoral Grant by the "Ministerio de Economia y Competitividad" of Spain through reference No. DI-15-08100. es_ES
dc.language Inglés es_ES
dc.publisher American Institute of Physics es_ES
dc.relation.ispartof Applied Physics Letters es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Metamaterials es_ES
dc.subject Helmhotz resonators es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Interferences in Locally Resonant Sonic Metamaterials Formed from Helmholtz Resonators es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1063/1.5092375 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//DI-15-08100/ES/DI-15-08100/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.description.bibliographicCitation Peiró-Torres, MDP.; Castiñeira Ibáñez, S.; Redondo, J.; Sánchez Pérez, JV. (2019). Interferences in Locally Resonant Sonic Metamaterials Formed from Helmholtz Resonators. Applied Physics Letters. 114(17):1-4. https://doi.org/10.1063/1.5092375 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1063/1.5092375 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 4 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 114 es_ES
dc.description.issue 17 es_ES
dc.relation.pasarela S\392395 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Fok, L., Ambati, M., & Zhang, X. (2008). Acoustic Metamaterials. MRS Bulletin, 33(10), 931-934. doi:10.1557/mrs2008.202 es_ES
dc.description.references Christensen, J., Romero-García, V., Picó, R., Cebrecos, A., de Abajo, F. J. G., Mortensen, N. A., … Sánchez-Morcillo, V. J. (2014). Extraordinary absorption of sound in porous lamella-crystals. Scientific Reports, 4(1). doi:10.1038/srep04674 es_ES
dc.description.references Liang, Z., Willatzen, M., Li, J., & Christensen, J. (2012). Tunable acoustic double negativity metamaterial. Scientific Reports, 2(1). doi:10.1038/srep00859 es_ES
dc.description.references Mei, J., Ma, G., Yang, M., Yang, Z., Wen, W., & Sheng, P. (2012). Dark acoustic metamaterials as super absorbers for low-frequency sound. Nature Communications, 3(1). doi:10.1038/ncomms1758 es_ES
dc.description.references Lee, S. H., Park, C. M., Seo, Y. M., Wang, Z. G., & Kim, C. K. (2010). Composite Acoustic Medium with Simultaneously Negative Density and Modulus. Physical Review Letters, 104(5). doi:10.1103/physrevlett.104.054301 es_ES
dc.description.references Fleury, R., Sounas, D. L., Sieck, C. F., Haberman, M. R., & Alù, A. (2014). Sound Isolation and Giant Linear Nonreciprocity in a Compact Acoustic Circulator. Science, 343(6170), 516-519. doi:10.1126/science.1246957 es_ES
dc.description.references Cheng, Y., Xu, J. Y., & Liu, X. J. (2008). One-dimensional structured ultrasonic metamaterials with simultaneously negative dynamic density and modulus. Physical Review B, 77(4). doi:10.1103/physrevb.77.045134 es_ES
dc.description.references Cheng, Y., Yang, F., Xu, J. Y., & Liu, X. J. (2008). A multilayer structured acoustic cloak with homogeneous isotropic materials. Applied Physics Letters, 92(15), 151913. doi:10.1063/1.2903500 es_ES
dc.description.references Sanchis, L., García-Chocano, V. M., Llopis-Pontiveros, R., Climente, A., Martínez-Pastor, J., Cervera, F., & Sánchez-Dehesa, J. (2013). Three-Dimensional Axisymmetric Cloak Based on the Cancellation of Acoustic Scattering from a Sphere. Physical Review Letters, 110(12). doi:10.1103/physrevlett.110.124301 es_ES
dc.description.references Farhat, M., Chen, P.-Y., Bağcı, H., Enoch, S., Guenneau, S., & Alù, A. (2014). Platonic Scattering Cancellation for Bending Waves in a Thin Plate. Scientific Reports, 4(1). doi:10.1038/srep04644 es_ES
dc.description.references Fang, N., Xi, D., Xu, J., Ambati, M., Srituravanich, W., Sun, C., & Zhang, X. (2006). Ultrasonic metamaterials with negative modulus. Nature Materials, 5(6), 452-456. doi:10.1038/nmat1644 es_ES
dc.description.references Shen, C., Xu, J., Fang, N. X., & Jing, Y. (2014). Anisotropic Complementary Acoustic Metamaterial for Canceling out Aberrating Layers. Physical Review X, 4(4). doi:10.1103/physrevx.4.041033 es_ES
dc.description.references Li, Y., Liang, B., Zou, X., & Cheng, J. (2013). Extraordinary acoustic transmission through ultrathin acoustic metamaterials by coiling up space. Applied Physics Letters, 103(6), 063509. doi:10.1063/1.4817925 es_ES
dc.description.references Tang, K., Qiu, C., Lu, J., Ke, M., & Liu, Z. (2015). Focusing and directional beaming effects of airborne sound through a planar lens with zigzag slits. Journal of Applied Physics, 117(2), 024503. doi:10.1063/1.4905910 es_ES
dc.description.references Cai, X., Guo, Q., Hu, G., & Yang, J. (2014). Ultrathin low-frequency sound absorbing panels based on coplanar spiral tubes or coplanar Helmholtz resonators. Applied Physics Letters, 105(12), 121901. doi:10.1063/1.4895617 es_ES
dc.description.references Leroy, V., Strybulevych, A., Lanoy, M., Lemoult, F., Tourin, A., & Page, J. H. (2015). Superabsorption of acoustic waves with bubble metascreens. Physical Review B, 91(2). doi:10.1103/physrevb.91.020301 es_ES
dc.description.references Hu, X., Chan, C. T., & Zi, J. (2005). Two-dimensional sonic crystals with Helmholtz resonators. Physical Review E, 71(5). doi:10.1103/physreve.71.055601 es_ES
dc.description.references Karimi, M., Croaker, P., & Kessissoglou, N. (2017). Acoustic scattering for 3D multi-directional periodic structures using the boundary element method. The Journal of the Acoustical Society of America, 141(1), 313-323. doi:10.1121/1.4973908 es_ES
dc.description.references Yang, X. W., Lee, J. S., & Kim, Y. Y. (2016). Effective mass density based topology optimization of locally resonant acoustic metamaterials for bandgap maximization. Journal of Sound and Vibration, 383, 89-107. doi:10.1016/j.jsv.2016.07.022 es_ES
dc.description.references Chen, Y., & Wang, L. (2014). Periodic co-continuous acoustic metamaterials with overlapping locally resonant and Bragg band gaps. Applied Physics Letters, 105(19), 191907. doi:10.1063/1.4902129 es_ES
dc.description.references Theocharis, G., Richoux, O., García, V. R., Merkel, A., & Tournat, V. (2014). Limits of slow sound propagation and transparency in lossy, locally resonant periodic structures. New Journal of Physics, 16(9), 093017. doi:10.1088/1367-2630/16/9/093017 es_ES
dc.description.references Lardeau, A., Groby, J.-P., & Romero-García, V. (2016). Broadband Transmission Loss Using the Overlap of Resonances in 3D Sonic Crystals. Crystals, 6(5), 51. doi:10.3390/cryst6050051 es_ES
dc.description.references Liu, Z., Zhang, X., Mao, Y., Zhu, Y. Y., Yang, Z., Chan, C. T., & Sheng, P. (2000). Locally Resonant Sonic Materials. Science, 289(5485), 1734-1736. doi:10.1126/science.289.5485.1734 es_ES
dc.description.references Park, C. M., & Lee, S. H. (2013). Propagation of acoustic waves in a metamaterial with a refractive index of near zero. Applied Physics Letters, 102(24), 241906. doi:10.1063/1.4811742 es_ES
dc.description.references Wang, T.-T., Wang, Y.-F., Wang, Y.-S., & Laude, V. (2018). Evanescent-wave tuning of a locally resonant sonic crystal. Applied Physics Letters, 113(23), 231901. doi:10.1063/1.5066058 es_ES
dc.description.references Yuan, B., Humphrey, V. F., Wen, J., & Wen, X. (2013). On the coupling of resonance and Bragg scattering effects in three-dimensional locally resonant sonic materials. Ultrasonics, 53(7), 1332-1343. doi:10.1016/j.ultras.2013.03.019 es_ES
dc.description.references Montiel, F., Chung, H., Karimi, M., & Kessissoglou, N. (2017). An analytical and numerical investigation of acoustic attenuation by a finite sonic crystal. Wave Motion, 70, 135-151. doi:10.1016/j.wavemoti.2016.12.002 es_ES
dc.description.references Sigalas, M. M., Economou, E. N., & Kafesaki, M. (1994). Spectral gaps for electromagnetic and scalar waves: Possible explanation for certain differences. Physical Review B, 50(5), 3393-3396. doi:10.1103/physrevb.50.3393 es_ES
dc.description.references Economou, E. N., & Sigalas, M. M. (1993). Classical wave propagation in periodic structures: Cermet versus network topology. Physical Review B, 48(18), 13434-13438. doi:10.1103/physrevb.48.13434 es_ES
dc.description.references Berenger, J.-P. (1994). A perfectly matched layer for the absorption of electromagnetic waves. Journal of Computational Physics, 114(2), 185-200. doi:10.1006/jcph.1994.1159 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem