- -

Hydrogen Abstraction from the C15 Position of the Cholesterol Skeleton

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Hydrogen Abstraction from the C15 Position of the Cholesterol Skeleton

Show full item record

Palumbo, F.; Andreu Ros, MI.; Brunetti, M.; Schmallegger, M.; Gescheidt, G.; Neshchadin, D.; Miranda Alonso, MÁ. (2019). Hydrogen Abstraction from the C15 Position of the Cholesterol Skeleton. The Journal of Organic Chemistry. 84(23):15184-15191. https://doi.org/10.1021/acs.joc.9b02181

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/166456

Files in this item

Item Metadata

Title: Hydrogen Abstraction from the C15 Position of the Cholesterol Skeleton
Author: Palumbo, Fabrizio Andreu Ros, María Inmaculada Brunetti, M. Schmallegger, Max Gescheidt, Georg Neshchadin, Dmytro Miranda Alonso, Miguel Ángel
UPV Unit: Universitat Politècnica de València. Departamento de Química - Departament de Química
Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Issued date:
Abstract:
[EN] Cholesterol (Ch) is an integral part of cell membrane, where it is prone to oxidation. In humans, oxidation of Ch is commonly linked to various pathologies like Alzheimer's disease, atherosclerosis, and even cancer, ...[+]
Subjects: Cholesterol , CIDNP , Laser flash photolysis , Radicals , Steady-State Photolysis
Copyrigths: Reserva de todos los derechos
Source:
The Journal of Organic Chemistry. (issn: 0022-3263 )
DOI: 10.1021/acs.joc.9b02181
Publisher:
American Chemical Society
Publisher version: https://doi.org/10.1021/acs.joc.9b02181
Project ID:
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2016%2F120/
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2017%2F075/ES/Reacciones fotoquímicas de biomoléculas/
info:eu-repo/grantAgreement/MINECO//CPII16%2F00052/ES/CPII16%2F00052/
info:eu-repo/grantAgreement/MECD//AP2012-1693/ES/AP2012-1693/
info:eu-repo/grantAgreement/MINECO//PI16%2F01877/ES/Estrategia integrada de fotodiagnóstico combinando evaluación clínica, ensayos biológicos y estudios mecanísticos/
Thanks:
This work was supported by the Carlos III Institute of Health (Grants No. PII6/01877, "Miguel Servet fellowship" CPII16/00052 to I.A.), and by the Generalitat Valenciana (Prometeo 2017/075). We would like to thank Dr Fedora ...[+]
Type: Artículo

References

Zerbinati, C., & Iuliano, L. (2017). Cholesterol and related sterols autoxidation. Free Radical Biology and Medicine, 111, 151-155. doi:10.1016/j.freeradbiomed.2017.04.013

Schroepfer, G. J. (2000). Oxysterols: Modulators of Cholesterol Metabolism and Other Processes. Physiological Reviews, 80(1), 361-554. doi:10.1152/physrev.2000.80.1.361

Girotti, A. W., & Korytowski, W. (2017). Cholesterol Hydroperoxide Generation, Translocation, and Reductive Turnover in Biological Systems. Cell Biochemistry and Biophysics, 75(3-4), 413-419. doi:10.1007/s12013-017-0799-0 [+]
Zerbinati, C., & Iuliano, L. (2017). Cholesterol and related sterols autoxidation. Free Radical Biology and Medicine, 111, 151-155. doi:10.1016/j.freeradbiomed.2017.04.013

Schroepfer, G. J. (2000). Oxysterols: Modulators of Cholesterol Metabolism and Other Processes. Physiological Reviews, 80(1), 361-554. doi:10.1152/physrev.2000.80.1.361

Girotti, A. W., & Korytowski, W. (2017). Cholesterol Hydroperoxide Generation, Translocation, and Reductive Turnover in Biological Systems. Cell Biochemistry and Biophysics, 75(3-4), 413-419. doi:10.1007/s12013-017-0799-0

Poli, G., Biasi, F., & Leonarduzzi, G. (2013). Oxysterols in the pathogenesis of major chronic diseases. Redox Biology, 1(1), 125-130. doi:10.1016/j.redox.2012.12.001

Buttari, B., Segoni, L., Profumo, E., D’Arcangelo, D., Rossi, S., Facchiano, F., … Riganò, R. (2013). 7-Oxo-cholesterol potentiates pro-inflammatory signaling in human M1 and M2 macrophages. Biochemical Pharmacology, 86(1), 130-137. doi:10.1016/j.bcp.2013.04.008

Scheinost, J., Wang, H., Boldt, G., Offer, J., & Wentworth, P. (2008). Cholesterolseco-Sterol-Induced Aggregation of Methylated Amyloid-β Peptidesâ Insights into Aldehyde-Initiated Fibrillization of Amyloid-β. Angewandte Chemie International Edition, 47(21), 3919-3922. doi:10.1002/anie.200705922

Shahidi, F., & Zhong, Y. (2010). Lipid oxidation and improving the oxidative stability. Chemical Society Reviews, 39(11), 4067. doi:10.1039/b922183m

Zielinski, Z. A. M., & Pratt, D. A. (2017). Lipid Peroxidation: Kinetics, Mechanisms, and Products. The Journal of Organic Chemistry, 82(6), 2817-2825. doi:10.1021/acs.joc.7b00152

Bignon, E., Marazzi, M., Besancenot, V., Gattuso, H., Drouot, G., Morell, C., … Monari, A. (2017). Ibuprofen and ketoprofen potentiate UVA-induced cell death by a photosensitization process. Scientific Reports, 7(1). doi:10.1038/s41598-017-09406-8

Bagheri, H., Lhiaubet, V., Montastruc, J. L., & Chouini-Lalanne, N. (2000). Photosensitivity to Ketoprofen. Drug Safety, 22(5), 339-349. doi:10.2165/00002018-200022050-00002

Breslow, R. (1980). Biomimetic control of chemical selectivity. Accounts of Chemical Research, 13(6), 170-177. doi:10.1021/ar50150a002

Breslow, R., Baldwin, S., Flechtner, T., Kalicky, P., Liu, S., & Washburn, W. (1973). Remote oxidation of steroids by photolysis of attached benzophenone groups. Journal of the American Chemical Society, 95(10), 3251-3262. doi:10.1021/ja00791a031

Zielinski, Z. A. M., & Pratt, D. A. (2016). Cholesterol Autoxidation Revisited: Debunking the Dogma Associated with the Most Vilified of Lipids. Journal of the American Chemical Society, 138(22), 6932-6935. doi:10.1021/jacs.6b03344

Garrec, J., Monari, A., Assfeld, X., Mir, L. M., & Tarek, M. (2014). Lipid Peroxidation in Membranes: The Peroxyl Radical Does Not «Float». The Journal of Physical Chemistry Letters, 5(10), 1653-1658. doi:10.1021/jz500502q

Farez, M. F., Quintana, F. J., Gandhi, R., Izquierdo, G., Lucas, M., & Weiner, H. L. (2009). Toll-like receptor 2 and poly(ADP-ribose) polymerase 1 promote central nervous system neuroinflammation in progressive EAE. Nature Immunology, 10(9), 958-964. doi:10.1038/ni.1775

Björkhem, I., Lövgren-Sandblom, A., Piehl, F., Khademi, M., Pettersson, H., Leoni, V., … Diczfalusy, U. (2011). High levels of 15-oxygenated steroids in circulation of patients with multiple sclerosis: fact or fiction? Journal of Lipid Research, 52(1), 170-174. doi:10.1194/jlr.d011072

Davies, H. M. L., & Morton, D. (2017). Collective Approach to Advancing C–H Functionalization. ACS Central Science, 3(9), 936-943. doi:10.1021/acscentsci.7b00329

Gutekunst, W. R., & Baran, P. S. (2014). Applications of C–H Functionalization Logic to Cyclobutane Synthesis. The Journal of Organic Chemistry, 79(6), 2430-2452. doi:10.1021/jo4027148

Neshchadin, D., Palumbo, F., Sinicropi, M. S., Andreu, I., Gescheidt, G., & Miranda, M. A. (2013). Topological control in radical reactions of cholesterol in model dyads. Chemical Science, 4(4), 1608. doi:10.1039/c3sc22109a

Andreu, I., Morera, I. M., Boscá, F., Sanchez, L., Camps, P., & Miranda, M. A. (2008). Cholesterol–diaryl ketone stereoisomeric dyads as models for «clean» type I and type II photooxygenation mechanisms. Organic & Biomolecular Chemistry, 6(5), 860. doi:10.1039/b718068c

Andreu, I., Palumbo, F., Tilocca, F., Morera, I. M., Boscá, F., & Miranda, M. A. (2011). Solvent Effects in Hydrogen Abstraction from Cholesterol by Benzophenone Triplet Excited State. Organic Letters, 13(15), 4096-4099. doi:10.1021/ol2016059

Boscá, F., Andreu, I., Morera, I. M., Samadi, A., & Miranda, M. A. (2003). Chiral discrimination in the intramolecular abstraction of allylic hydrogens by benzophenone triplets. Chem. Commun., (13), 1592-1593. doi:10.1039/b303263a

Kaptein, R., & Oosterhoff, L. J. (1969). Chemically induced dynamic nuclear polarization III (anomalous multiplets of radical coupling and disproportionation products). Chemical Physics Letters, 4(4), 214-216. doi:10.1016/0009-2614(69)80105-3

Closs, G. L. (1969). Mechanism explaining nuclear spin polarizations in radical combination reactions. Journal of the American Chemical Society, 91(16), 4552-4554. doi:10.1021/ja01044a043

Vollenweider, J.-K., Fischer, H., Hennig, J., & Leuschner, R. (1985). Time-resolved CIDNP in laser flash photolysis of aliphatic ketones. A quantitative analysis. Chemical Physics, 97(2-3), 217-234. doi:10.1016/0301-0104(85)87033-6

Neshchadin, D., Levinn, R., Gescheidt, G., & Batchelor, S. N. (2010). Probing the Antioxidant Activity of Polyphenols by CIDNP: From Model Compounds to Green Tea and Red Wine. Chemistry - A European Journal, 16(23), 7008-7016. doi:10.1002/chem.200903238

Kier, L. B. (1981). Quantitation of Solvent Polarity Based on Molecular Structure. Journal of Pharmaceutical Sciences, 70(8), 930-933. doi:10.1002/jps.2600700825

Poza, J., Rega, M., Paz, V., Alonso, B., Rodríguez, J., Salvador, N., … Jiménez, C. (2007). Synthesis and evaluation of new 6-hydroximinosteroid analogs as cytotoxic agents. Bioorganic & Medicinal Chemistry, 15(14), 4722-4740. doi:10.1016/j.bmc.2007.05.003

Poza, J. J., Jiménez, C., & Rodríguez, J. (2008). J-Based Analysis and DFT-NMR Assignments of Natural Complex Molecules: Application to 3β,7-Dihydroxy-5,6-epoxycholestanes. European Journal of Organic Chemistry, 2008(23), 3960-3969. doi:10.1002/ejoc.200800358

Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A. Gaussian 09, revision D.01; Gaussian, Inc.: Wallingford, CT, 2009.

Stephens, P. J., Devlin, F. J., Chabalowski, C. F., & Frisch, M. J. (1994). Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields. The Journal of Physical Chemistry, 98(45), 11623-11627. doi:10.1021/j100096a001

Becke, A. D. (1993). Density‐functional thermochemistry. III. The role of exact exchange. The Journal of Chemical Physics, 98(7), 5648-5652. doi:10.1063/1.464913

Schäfer, A., Horn, H., & Ahlrichs, R. (1992). Fully optimized contracted Gaussian basis sets for atoms Li to Kr. The Journal of Chemical Physics, 97(4), 2571-2577. doi:10.1063/1.463096

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record