Mostrar el registro sencillo del ítem
dc.contributor.author | Palumbo, Fabrizio | es_ES |
dc.contributor.author | Andreu Ros, María Inmaculada | es_ES |
dc.contributor.author | Brunetti, M. | es_ES |
dc.contributor.author | Schmallegger, Max | es_ES |
dc.contributor.author | Gescheidt, Georg | es_ES |
dc.contributor.author | Neshchadin, Dmytro | es_ES |
dc.contributor.author | Miranda Alonso, Miguel Ángel | es_ES |
dc.date.accessioned | 2021-05-18T03:30:55Z | |
dc.date.available | 2021-05-18T03:30:55Z | |
dc.date.issued | 2019-12-06 | es_ES |
dc.identifier.issn | 0022-3263 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/166456 | |
dc.description.abstract | [EN] Cholesterol (Ch) is an integral part of cell membrane, where it is prone to oxidation. In humans, oxidation of Ch is commonly linked to various pathologies like Alzheimer's disease, atherosclerosis, and even cancer, which proceed via mechanisms involving enzymatic and free radical pathways. The latter begin with hydrogen abstraction (HA) from Ch by a reactive free radical. It has been established that the most efficient HA from Ch occurs at C7, although HA from C4 by peroxyl radicals has recently been observed. Conversely, HA from Ch positions other than the thermodynamically preferred C7 or C4 has never been reported. We have designed a Ch derivative where a benzophenone moiety is linked to C7 by a covalent bond. This mirrors a specific orientation of Ch within a confined environment. Product analysis and time-resolved spectroscopic studies reveal an unprecedented HA from C15, which is a thermodynamically unfavorable position. This indicates that a specific topology of reactants is crucial for the reactivity of Ch. The relative orientation of the reactants can also be relevant in biological membranes, where Ch, polyunsaturated fatty acids, and numerous oxidizing species are confined in highly restricted and anisotropic environments. | es_ES |
dc.description.sponsorship | This work was supported by the Carlos III Institute of Health (Grants No. PII6/01877, "Miguel Servet fellowship" CPII16/00052 to I.A.), and by the Generalitat Valenciana (Prometeo 2017/075). We would like to thank Dr Fedora Grande for sending an exchange student (M.B.). D.N. and G.G. thank NAWI Graz for support. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | American Chemical Society | es_ES |
dc.relation.ispartof | The Journal of Organic Chemistry | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Cholesterol | es_ES |
dc.subject | CIDNP | es_ES |
dc.subject | Laser flash photolysis | es_ES |
dc.subject | Radicals | es_ES |
dc.subject | Steady-State Photolysis | es_ES |
dc.subject.classification | QUIMICA ORGANICA | es_ES |
dc.title | Hydrogen Abstraction from the C15 Position of the Cholesterol Skeleton | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1021/acs.joc.9b02181 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2016%2F120/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2017%2F075/ES/Reacciones fotoquímicas de biomoléculas/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//CPII16%2F00052/ES/CPII16%2F00052/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MECD//AP2012-1693/ES/AP2012-1693/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//PI16%2F01877/ES/Estrategia integrada de fotodiagnóstico combinando evaluación clínica, ensayos biológicos y estudios mecanísticos/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química | es_ES |
dc.description.bibliographicCitation | Palumbo, F.; Andreu Ros, MI.; Brunetti, M.; Schmallegger, M.; Gescheidt, G.; Neshchadin, D.; Miranda Alonso, MÁ. (2019). Hydrogen Abstraction from the C15 Position of the Cholesterol Skeleton. The Journal of Organic Chemistry. 84(23):15184-15191. https://doi.org/10.1021/acs.joc.9b02181 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1021/acs.joc.9b02181 | es_ES |
dc.description.upvformatpinicio | 15184 | es_ES |
dc.description.upvformatpfin | 15191 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 84 | es_ES |
dc.description.issue | 23 | es_ES |
dc.identifier.pmid | 31675234 | es_ES |
dc.relation.pasarela | S\406764 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Ministerio de Educación | es_ES |
dc.contributor.funder | Instituto de Salud Carlos III | es_ES |
dc.description.references | Zerbinati, C., & Iuliano, L. (2017). Cholesterol and related sterols autoxidation. Free Radical Biology and Medicine, 111, 151-155. doi:10.1016/j.freeradbiomed.2017.04.013 | es_ES |
dc.description.references | Schroepfer, G. J. (2000). Oxysterols: Modulators of Cholesterol Metabolism and Other Processes. Physiological Reviews, 80(1), 361-554. doi:10.1152/physrev.2000.80.1.361 | es_ES |
dc.description.references | Girotti, A. W., & Korytowski, W. (2017). Cholesterol Hydroperoxide Generation, Translocation, and Reductive Turnover in Biological Systems. Cell Biochemistry and Biophysics, 75(3-4), 413-419. doi:10.1007/s12013-017-0799-0 | es_ES |
dc.description.references | Poli, G., Biasi, F., & Leonarduzzi, G. (2013). Oxysterols in the pathogenesis of major chronic diseases. Redox Biology, 1(1), 125-130. doi:10.1016/j.redox.2012.12.001 | es_ES |
dc.description.references | Buttari, B., Segoni, L., Profumo, E., D’Arcangelo, D., Rossi, S., Facchiano, F., … Riganò, R. (2013). 7-Oxo-cholesterol potentiates pro-inflammatory signaling in human M1 and M2 macrophages. Biochemical Pharmacology, 86(1), 130-137. doi:10.1016/j.bcp.2013.04.008 | es_ES |
dc.description.references | Scheinost, J., Wang, H., Boldt, G., Offer, J., & Wentworth, P. (2008). Cholesterolseco-Sterol-Induced Aggregation of Methylated Amyloid-β Peptidesâ Insights into Aldehyde-Initiated Fibrillization of Amyloid-β. Angewandte Chemie International Edition, 47(21), 3919-3922. doi:10.1002/anie.200705922 | es_ES |
dc.description.references | Shahidi, F., & Zhong, Y. (2010). Lipid oxidation and improving the oxidative stability. Chemical Society Reviews, 39(11), 4067. doi:10.1039/b922183m | es_ES |
dc.description.references | Zielinski, Z. A. M., & Pratt, D. A. (2017). Lipid Peroxidation: Kinetics, Mechanisms, and Products. The Journal of Organic Chemistry, 82(6), 2817-2825. doi:10.1021/acs.joc.7b00152 | es_ES |
dc.description.references | Bignon, E., Marazzi, M., Besancenot, V., Gattuso, H., Drouot, G., Morell, C., … Monari, A. (2017). Ibuprofen and ketoprofen potentiate UVA-induced cell death by a photosensitization process. Scientific Reports, 7(1). doi:10.1038/s41598-017-09406-8 | es_ES |
dc.description.references | Bagheri, H., Lhiaubet, V., Montastruc, J. L., & Chouini-Lalanne, N. (2000). Photosensitivity to Ketoprofen. Drug Safety, 22(5), 339-349. doi:10.2165/00002018-200022050-00002 | es_ES |
dc.description.references | Breslow, R. (1980). Biomimetic control of chemical selectivity. Accounts of Chemical Research, 13(6), 170-177. doi:10.1021/ar50150a002 | es_ES |
dc.description.references | Breslow, R., Baldwin, S., Flechtner, T., Kalicky, P., Liu, S., & Washburn, W. (1973). Remote oxidation of steroids by photolysis of attached benzophenone groups. Journal of the American Chemical Society, 95(10), 3251-3262. doi:10.1021/ja00791a031 | es_ES |
dc.description.references | Zielinski, Z. A. M., & Pratt, D. A. (2016). Cholesterol Autoxidation Revisited: Debunking the Dogma Associated with the Most Vilified of Lipids. Journal of the American Chemical Society, 138(22), 6932-6935. doi:10.1021/jacs.6b03344 | es_ES |
dc.description.references | Garrec, J., Monari, A., Assfeld, X., Mir, L. M., & Tarek, M. (2014). Lipid Peroxidation in Membranes: The Peroxyl Radical Does Not «Float». The Journal of Physical Chemistry Letters, 5(10), 1653-1658. doi:10.1021/jz500502q | es_ES |
dc.description.references | Farez, M. F., Quintana, F. J., Gandhi, R., Izquierdo, G., Lucas, M., & Weiner, H. L. (2009). Toll-like receptor 2 and poly(ADP-ribose) polymerase 1 promote central nervous system neuroinflammation in progressive EAE. Nature Immunology, 10(9), 958-964. doi:10.1038/ni.1775 | es_ES |
dc.description.references | Björkhem, I., Lövgren-Sandblom, A., Piehl, F., Khademi, M., Pettersson, H., Leoni, V., … Diczfalusy, U. (2011). High levels of 15-oxygenated steroids in circulation of patients with multiple sclerosis: fact or fiction? Journal of Lipid Research, 52(1), 170-174. doi:10.1194/jlr.d011072 | es_ES |
dc.description.references | Davies, H. M. L., & Morton, D. (2017). Collective Approach to Advancing C–H Functionalization. ACS Central Science, 3(9), 936-943. doi:10.1021/acscentsci.7b00329 | es_ES |
dc.description.references | Gutekunst, W. R., & Baran, P. S. (2014). Applications of C–H Functionalization Logic to Cyclobutane Synthesis. The Journal of Organic Chemistry, 79(6), 2430-2452. doi:10.1021/jo4027148 | es_ES |
dc.description.references | Neshchadin, D., Palumbo, F., Sinicropi, M. S., Andreu, I., Gescheidt, G., & Miranda, M. A. (2013). Topological control in radical reactions of cholesterol in model dyads. Chemical Science, 4(4), 1608. doi:10.1039/c3sc22109a | es_ES |
dc.description.references | Andreu, I., Morera, I. M., Boscá, F., Sanchez, L., Camps, P., & Miranda, M. A. (2008). Cholesterol–diaryl ketone stereoisomeric dyads as models for «clean» type I and type II photooxygenation mechanisms. Organic & Biomolecular Chemistry, 6(5), 860. doi:10.1039/b718068c | es_ES |
dc.description.references | Andreu, I., Palumbo, F., Tilocca, F., Morera, I. M., Boscá, F., & Miranda, M. A. (2011). Solvent Effects in Hydrogen Abstraction from Cholesterol by Benzophenone Triplet Excited State. Organic Letters, 13(15), 4096-4099. doi:10.1021/ol2016059 | es_ES |
dc.description.references | Boscá, F., Andreu, I., Morera, I. M., Samadi, A., & Miranda, M. A. (2003). Chiral discrimination in the intramolecular abstraction of allylic hydrogens by benzophenone triplets. Chem. Commun., (13), 1592-1593. doi:10.1039/b303263a | es_ES |
dc.description.references | Kaptein, R., & Oosterhoff, L. J. (1969). Chemically induced dynamic nuclear polarization III (anomalous multiplets of radical coupling and disproportionation products). Chemical Physics Letters, 4(4), 214-216. doi:10.1016/0009-2614(69)80105-3 | es_ES |
dc.description.references | Closs, G. L. (1969). Mechanism explaining nuclear spin polarizations in radical combination reactions. Journal of the American Chemical Society, 91(16), 4552-4554. doi:10.1021/ja01044a043 | es_ES |
dc.description.references | Vollenweider, J.-K., Fischer, H., Hennig, J., & Leuschner, R. (1985). Time-resolved CIDNP in laser flash photolysis of aliphatic ketones. A quantitative analysis. Chemical Physics, 97(2-3), 217-234. doi:10.1016/0301-0104(85)87033-6 | es_ES |
dc.description.references | Neshchadin, D., Levinn, R., Gescheidt, G., & Batchelor, S. N. (2010). Probing the Antioxidant Activity of Polyphenols by CIDNP: From Model Compounds to Green Tea and Red Wine. Chemistry - A European Journal, 16(23), 7008-7016. doi:10.1002/chem.200903238 | es_ES |
dc.description.references | Kier, L. B. (1981). Quantitation of Solvent Polarity Based on Molecular Structure. Journal of Pharmaceutical Sciences, 70(8), 930-933. doi:10.1002/jps.2600700825 | es_ES |
dc.description.references | Poza, J., Rega, M., Paz, V., Alonso, B., Rodríguez, J., Salvador, N., … Jiménez, C. (2007). Synthesis and evaluation of new 6-hydroximinosteroid analogs as cytotoxic agents. Bioorganic & Medicinal Chemistry, 15(14), 4722-4740. doi:10.1016/j.bmc.2007.05.003 | es_ES |
dc.description.references | Poza, J. J., Jiménez, C., & Rodríguez, J. (2008). J-Based Analysis and DFT-NMR Assignments of Natural Complex Molecules: Application to 3β,7-Dihydroxy-5,6-epoxycholestanes. European Journal of Organic Chemistry, 2008(23), 3960-3969. doi:10.1002/ejoc.200800358 | es_ES |
dc.description.references | Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A. Gaussian 09, revision D.01; Gaussian, Inc.: Wallingford, CT, 2009. | es_ES |
dc.description.references | Stephens, P. J., Devlin, F. J., Chabalowski, C. F., & Frisch, M. J. (1994). Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields. The Journal of Physical Chemistry, 98(45), 11623-11627. doi:10.1021/j100096a001 | es_ES |
dc.description.references | Becke, A. D. (1993). Density‐functional thermochemistry. III. The role of exact exchange. The Journal of Chemical Physics, 98(7), 5648-5652. doi:10.1063/1.464913 | es_ES |
dc.description.references | Schäfer, A., Horn, H., & Ahlrichs, R. (1992). Fully optimized contracted Gaussian basis sets for atoms Li to Kr. The Journal of Chemical Physics, 97(4), 2571-2577. doi:10.1063/1.463096 | es_ES |