- -

Integrated photonic tunable basic units using dual-drive directional couplers

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Integrated photonic tunable basic units using dual-drive directional couplers

Show full item record

Pérez-López, D.; Gutierrez Campo, AM.; Sánchez-Gomáriz, E.; Dasmahapatra, P.; Capmany Francoy, J. (2019). Integrated photonic tunable basic units using dual-drive directional couplers. Optics Express. 27(26):38071-38086. https://doi.org/10.1364/OE.27.038071

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/166517

Files in this item

Item Metadata

Title: Integrated photonic tunable basic units using dual-drive directional couplers
Author: Pérez-López, Daniel Gutierrez Campo, Ana Maria Sánchez-Gomáriz, Erica Dasmahapatra, Prometheus Capmany Francoy, José
UPV Unit: Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions
Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia
Issued date:
Abstract:
[EN] Photonic integrated circuits based on waveguide meshes and multibeam interferometers call for large-scale integration of Tunable Basic Units (TBUs) that feature beam splitters and waveguides. This units are loaded ...[+]
Subjects: Programmable photonics , Directional coupler , Integrated optics
Copyrigths: Reserva de todos los derechos
Source:
Optics Express. (issn: 1094-4087 )
DOI: 10.1364/OE.27.038071
Publisher:
The Optical Society
Publisher version: https://doi.org/10.1364/OE.27.038071
Project ID:
info:eu-repo/grantAgreement/EC/H2020/741415/EU/Universal microwave photonics programmable processor for seamlessly interfacing wireless and optical ICT systems/
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2017%2F017/
info:eu-repo/grantAgreement/EC/H2020/859927/EU/Field Programmable Photonic Arrays/
info:eu-repo/grantAgreement/COST//CA16220/EU/European Network for High Performance Integrated Microwave Photonics/
Description: "© 2019 Optical Society of America. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modifications of the content of this paper are prohibited"
Thanks:
European Research Council (ERC ADG-2016UMWP-Chip, ERC-POC-2019 FPPAs); Generalitat Valenciana (PROMETEO 2017/017); European Cooperation in Science and Technology (COST Action CA16220 EUIMWP.).
Type: Artículo

References

Soref, R. (2006). The Past, Present, and Future of Silicon Photonics. IEEE Journal of Selected Topics in Quantum Electronics, 12(6), 1678-1687. doi:10.1109/jstqe.2006.883151

Somekh, S., Garmire, E., Yariv, A., Garvin, H. L., & Hunsperger, R. G. (1974). Channel Optical Waveguides and Directional Couplers in GaAs–Imbedded and Ridged. Applied Optics, 13(2), 327. doi:10.1364/ao.13.000327

Pérez, D., Gasulla, I., Capmany, J., & Soref, R. A. (2016). Reconfigurable lattice mesh designs for programmable photonic processors. Optics Express, 24(11), 12093. doi:10.1364/oe.24.012093 [+]
Soref, R. (2006). The Past, Present, and Future of Silicon Photonics. IEEE Journal of Selected Topics in Quantum Electronics, 12(6), 1678-1687. doi:10.1109/jstqe.2006.883151

Somekh, S., Garmire, E., Yariv, A., Garvin, H. L., & Hunsperger, R. G. (1974). Channel Optical Waveguides and Directional Couplers in GaAs–Imbedded and Ridged. Applied Optics, 13(2), 327. doi:10.1364/ao.13.000327

Pérez, D., Gasulla, I., Capmany, J., & Soref, R. A. (2016). Reconfigurable lattice mesh designs for programmable photonic processors. Optics Express, 24(11), 12093. doi:10.1364/oe.24.012093

Clements, W. R., Humphreys, P. C., Metcalf, B. J., Kolthammer, W. S., & Walsmley, I. A. (2016). Optimal design for universal multiport interferometers. Optica, 3(12), 1460. doi:10.1364/optica.3.001460

Zhuang, L., Roeloffzen, C. G. H., Hoekman, M., Boller, K.-J., & Lowery, A. J. (2015). Programmable photonic signal processor chip for radiofrequency applications. Optica, 2(10), 854. doi:10.1364/optica.2.000854

Pérez, D., Gasulla, I., Crudgington, L., Thomson, D. J., Khokhar, A. Z., Li, K., … Capmany, J. (2017). Multipurpose silicon photonics signal processor core. Nature Communications, 8(1). doi:10.1038/s41467-017-00714-1

Perez-Lopez, D., Sanchez, E., & Capmany, J. (2018). Programmable True Time Delay Lines Using Integrated Waveguide Meshes. Journal of Lightwave Technology, 36(19), 4591-4601. doi:10.1109/jlt.2018.2831008

Kogelnik, H., & Schmidt, R. (1976). Switched directional couplers with alternating ΔΒ. IEEE Journal of Quantum Electronics, 12(7), 396-401. doi:10.1109/jqe.1976.1069190

Schmidt, R. V., & Kogelnik, H. (1976). Electro‐optically switched coupler with stepped Δβ reversal using Ti‐diffused LiNbO3waveguides. Applied Physics Letters, 28(9), 503-506. doi:10.1063/1.88833

Alferness, R. C., & Veselka, J. J. (1985). Simultaneous modulation and wavelength multiplexing with a tunable Ti:LiNbO3directional coupler filter. Electronics Letters, 21(11), 466-467. doi:10.1049/el:19850330

Sharkawy, A., Shi, S., Prather, D. W., & Soref, R. A. (2002). Electro-optical switching using coupled photonic crystal waveguides. Optics Express, 10(20), 1048. doi:10.1364/oe.10.001048

Orlandi, P., Morichetti, F., Strain, M. J., Sorel, M., Melloni, A., & Bassi, P. (2013). Tunable silicon photonics directional coupler driven by a transverse temperature gradient. Optics Letters, 38(6), 863. doi:10.1364/ol.38.000863

Pérez, D., & Capmany, J. (2019). Scalable analysis for arbitrary photonic integrated waveguide meshes. Optica, 6(1), 19. doi:10.1364/optica.6.000019

Rios, C., Stegmaier, M., Cheng, Z., Youngblood, N., Wright, C. D., Pernice, W. H. P., & Bhaskaran, H. (2018). Controlled switching of phase-change materials by evanescent-field coupling in integrated photonics [Invited]. Optical Materials Express, 8(9), 2455. doi:10.1364/ome.8.002455

Zheng, J., Khanolkar, A., Xu, P., Colburn, S., Deshmukh, S., Myers, J., … Majumdar, A. (2018). GST-on-silicon hybrid nanophotonic integrated circuits: a non-volatile quasi-continuously reprogrammable platform. Optical Materials Express, 8(6), 1551. doi:10.1364/ome.8.001551

Capmany, J., Domenech, D., & Muñoz, P. (2014). Silicon graphene waveguide tunable broadband microwave photonics phase shifter. Optics Express, 22(7), 8094. doi:10.1364/oe.22.008094

Abel, S., Eltes, F., Ortmann, J. E., Messner, A., Castera, P., Wagner, T., … Fompeyrine, J. (2018). Large Pockels effect in micro- and nanostructured barium titanate integrated on silicon. Nature Materials, 18(1), 42-47. doi:10.1038/s41563-018-0208-0

Sanchez, L., Lechago, S., Gutierrez, A., & Sanchis, P. (2016). Analysis and Design Optimization of a Hybrid VO2/Silicon2 <inline-formula> <tex-math notation=«LaTeX»>$\times$</tex-math> </inline-formula> 2 Microring Switch. IEEE Photonics Journal, 8(2), 1-9. doi:10.1109/jphot.2016.2551463

Qiao, L., Tang, W., & Chu, T. (2017). 32 × 32 silicon electro-optic switch with built-in monitors and balanced-status units. Scientific Reports, 7(1). doi:10.1038/srep42306

Zheng, D., Doménech, J. D., Pan, W., Zou, X., Yan, L., & Pérez, D. (2019). Low-loss broadband 5  ×  5 non-blocking Si3N4 optical switch matrix. Optics Letters, 44(11), 2629. doi:10.1364/ol.44.002629

Capmany, J., Gasulla, I., & Pérez, D. (2015). The programmable processor. Nature Photonics, 10(1), 6-8. doi:10.1038/nphoton.2015.254

Carolan, J., Harrold, C., Sparrow, C., Martín-López, E., Russell, N. J., Silverstone, J. W., … Laing, A. (2015). Universal linear optics. Science, 349(6249), 711-716. doi:10.1126/science.aab3642

Lee, B. G., & Dupuis, N. (2019). Silicon Photonic Switch Fabrics: Technology and Architecture. Journal of Lightwave Technology, 37(1), 6-20. doi:10.1109/jlt.2018.2876828

Seok, T. J., Quack, N., Han, S., Muller, R. S., & Wu, M. C. (2016). Large-scale broadband digital silicon photonic switches with vertical adiabatic couplers. Optica, 3(1), 64. doi:10.1364/optica.3.000064

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record