Mostrar el registro sencillo del ítem
dc.contributor.author | Pérez-López, Daniel | es_ES |
dc.contributor.author | Gutierrez Campo, Ana Maria | es_ES |
dc.contributor.author | Sánchez-Gomáriz, Erica | es_ES |
dc.contributor.author | Dasmahapatra, Prometheus | es_ES |
dc.contributor.author | Capmany Francoy, José | es_ES |
dc.date.accessioned | 2021-05-20T03:32:49Z | |
dc.date.available | 2021-05-20T03:32:49Z | |
dc.date.issued | 2019-12-23 | es_ES |
dc.identifier.issn | 1094-4087 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/166517 | |
dc.description | "© 2019 Optical Society of America. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modifications of the content of this paper are prohibited" | es_ES |
dc.description.abstract | [EN] Photonic integrated circuits based on waveguide meshes and multibeam interferometers call for large-scale integration of Tunable Basic Units (TBUs) that feature beam splitters and waveguides. This units are loaded with phase actuators to provide complex linear processing functionalities based on optical interference and can be reconfigured dynamically. Here, we propose and experimentally demonstrate, to the best of our knowledge, for the first time, a thermally actuated Dual-Drive Directional Coupler (DD-DC) design integrated on a silicon nitride platform. It operates both as a standalone optical component providing arbitrary optical beam splitting and common phase as well as a low loss and potentially low footprint TBU. Finally, we report the experimental demonstration of the first integrated triangular waveguide mesh arrangement using DD-DC based TBUs and provide an extended analysis of its performance and scalability. (C) 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement | es_ES |
dc.description.sponsorship | European Research Council (ERC ADG-2016UMWP-Chip, ERC-POC-2019 FPPAs); Generalitat Valenciana (PROMETEO 2017/017); European Cooperation in Science and Technology (COST Action CA16220 EUIMWP.). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | The Optical Society | es_ES |
dc.relation.ispartof | Optics Express | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Programmable photonics | es_ES |
dc.subject | Directional coupler | es_ES |
dc.subject | Integrated optics | es_ES |
dc.subject.classification | TEORIA DE LA SEÑAL Y COMUNICACIONES | es_ES |
dc.title | Integrated photonic tunable basic units using dual-drive directional couplers | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1364/OE.27.038071 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/741415/EU/Universal microwave photonics programmable processor for seamlessly interfacing wireless and optical ICT systems/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2017%2F017/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/859927/EU/Field Programmable Photonic Arrays/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/COST//CA16220/EU/European Network for High Performance Integrated Microwave Photonics/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia | es_ES |
dc.description.bibliographicCitation | Pérez-López, D.; Gutierrez Campo, AM.; Sánchez-Gomáriz, E.; Dasmahapatra, P.; Capmany Francoy, J. (2019). Integrated photonic tunable basic units using dual-drive directional couplers. Optics Express. 27(26):38071-38086. https://doi.org/10.1364/OE.27.038071 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1364/OE.27.038071 | es_ES |
dc.description.upvformatpinicio | 38071 | es_ES |
dc.description.upvformatpfin | 38086 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 27 | es_ES |
dc.description.issue | 26 | es_ES |
dc.identifier.pmid | 31878579 | es_ES |
dc.relation.pasarela | S\411783 | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | European Cooperation in Science and Technology | es_ES |
dc.description.references | Soref, R. (2006). The Past, Present, and Future of Silicon Photonics. IEEE Journal of Selected Topics in Quantum Electronics, 12(6), 1678-1687. doi:10.1109/jstqe.2006.883151 | es_ES |
dc.description.references | Somekh, S., Garmire, E., Yariv, A., Garvin, H. L., & Hunsperger, R. G. (1974). Channel Optical Waveguides and Directional Couplers in GaAs–Imbedded and Ridged. Applied Optics, 13(2), 327. doi:10.1364/ao.13.000327 | es_ES |
dc.description.references | Pérez, D., Gasulla, I., Capmany, J., & Soref, R. A. (2016). Reconfigurable lattice mesh designs for programmable photonic processors. Optics Express, 24(11), 12093. doi:10.1364/oe.24.012093 | es_ES |
dc.description.references | Clements, W. R., Humphreys, P. C., Metcalf, B. J., Kolthammer, W. S., & Walsmley, I. A. (2016). Optimal design for universal multiport interferometers. Optica, 3(12), 1460. doi:10.1364/optica.3.001460 | es_ES |
dc.description.references | Zhuang, L., Roeloffzen, C. G. H., Hoekman, M., Boller, K.-J., & Lowery, A. J. (2015). Programmable photonic signal processor chip for radiofrequency applications. Optica, 2(10), 854. doi:10.1364/optica.2.000854 | es_ES |
dc.description.references | Pérez, D., Gasulla, I., Crudgington, L., Thomson, D. J., Khokhar, A. Z., Li, K., … Capmany, J. (2017). Multipurpose silicon photonics signal processor core. Nature Communications, 8(1). doi:10.1038/s41467-017-00714-1 | es_ES |
dc.description.references | Perez-Lopez, D., Sanchez, E., & Capmany, J. (2018). Programmable True Time Delay Lines Using Integrated Waveguide Meshes. Journal of Lightwave Technology, 36(19), 4591-4601. doi:10.1109/jlt.2018.2831008 | es_ES |
dc.description.references | Kogelnik, H., & Schmidt, R. (1976). Switched directional couplers with alternating ΔΒ. IEEE Journal of Quantum Electronics, 12(7), 396-401. doi:10.1109/jqe.1976.1069190 | es_ES |
dc.description.references | Schmidt, R. V., & Kogelnik, H. (1976). Electro‐optically switched coupler with stepped Δβ reversal using Ti‐diffused LiNbO3waveguides. Applied Physics Letters, 28(9), 503-506. doi:10.1063/1.88833 | es_ES |
dc.description.references | Alferness, R. C., & Veselka, J. J. (1985). Simultaneous modulation and wavelength multiplexing with a tunable Ti:LiNbO3directional coupler filter. Electronics Letters, 21(11), 466-467. doi:10.1049/el:19850330 | es_ES |
dc.description.references | Sharkawy, A., Shi, S., Prather, D. W., & Soref, R. A. (2002). Electro-optical switching using coupled photonic crystal waveguides. Optics Express, 10(20), 1048. doi:10.1364/oe.10.001048 | es_ES |
dc.description.references | Orlandi, P., Morichetti, F., Strain, M. J., Sorel, M., Melloni, A., & Bassi, P. (2013). Tunable silicon photonics directional coupler driven by a transverse temperature gradient. Optics Letters, 38(6), 863. doi:10.1364/ol.38.000863 | es_ES |
dc.description.references | Pérez, D., & Capmany, J. (2019). Scalable analysis for arbitrary photonic integrated waveguide meshes. Optica, 6(1), 19. doi:10.1364/optica.6.000019 | es_ES |
dc.description.references | Rios, C., Stegmaier, M., Cheng, Z., Youngblood, N., Wright, C. D., Pernice, W. H. P., & Bhaskaran, H. (2018). Controlled switching of phase-change materials by evanescent-field coupling in integrated photonics [Invited]. Optical Materials Express, 8(9), 2455. doi:10.1364/ome.8.002455 | es_ES |
dc.description.references | Zheng, J., Khanolkar, A., Xu, P., Colburn, S., Deshmukh, S., Myers, J., … Majumdar, A. (2018). GST-on-silicon hybrid nanophotonic integrated circuits: a non-volatile quasi-continuously reprogrammable platform. Optical Materials Express, 8(6), 1551. doi:10.1364/ome.8.001551 | es_ES |
dc.description.references | Capmany, J., Domenech, D., & Muñoz, P. (2014). Silicon graphene waveguide tunable broadband microwave photonics phase shifter. Optics Express, 22(7), 8094. doi:10.1364/oe.22.008094 | es_ES |
dc.description.references | Abel, S., Eltes, F., Ortmann, J. E., Messner, A., Castera, P., Wagner, T., … Fompeyrine, J. (2018). Large Pockels effect in micro- and nanostructured barium titanate integrated on silicon. Nature Materials, 18(1), 42-47. doi:10.1038/s41563-018-0208-0 | es_ES |
dc.description.references | Sanchez, L., Lechago, S., Gutierrez, A., & Sanchis, P. (2016). Analysis and Design Optimization of a Hybrid VO2/Silicon2 <inline-formula> <tex-math notation=«LaTeX»>$\times$</tex-math> </inline-formula> 2 Microring Switch. IEEE Photonics Journal, 8(2), 1-9. doi:10.1109/jphot.2016.2551463 | es_ES |
dc.description.references | Qiao, L., Tang, W., & Chu, T. (2017). 32 × 32 silicon electro-optic switch with built-in monitors and balanced-status units. Scientific Reports, 7(1). doi:10.1038/srep42306 | es_ES |
dc.description.references | Zheng, D., Doménech, J. D., Pan, W., Zou, X., Yan, L., & Pérez, D. (2019). Low-loss broadband 5 × 5 non-blocking Si3N4 optical switch matrix. Optics Letters, 44(11), 2629. doi:10.1364/ol.44.002629 | es_ES |
dc.description.references | Capmany, J., Gasulla, I., & Pérez, D. (2015). The programmable processor. Nature Photonics, 10(1), 6-8. doi:10.1038/nphoton.2015.254 | es_ES |
dc.description.references | Carolan, J., Harrold, C., Sparrow, C., Martín-López, E., Russell, N. J., Silverstone, J. W., … Laing, A. (2015). Universal linear optics. Science, 349(6249), 711-716. doi:10.1126/science.aab3642 | es_ES |
dc.description.references | Lee, B. G., & Dupuis, N. (2019). Silicon Photonic Switch Fabrics: Technology and Architecture. Journal of Lightwave Technology, 37(1), 6-20. doi:10.1109/jlt.2018.2876828 | es_ES |
dc.description.references | Seok, T. J., Quack, N., Han, S., Muller, R. S., & Wu, M. C. (2016). Large-scale broadband digital silicon photonic switches with vertical adiabatic couplers. Optica, 3(1), 64. doi:10.1364/optica.3.000064 | es_ES |