- -

Integration of metal organic frameworks with enzymes as multifunctional solids for cascade catalysis

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Integration of metal organic frameworks with enzymes as multifunctional solids for cascade catalysis

Mostrar el registro completo del ítem

Dhakshinamoorthy, A.; Asiri, AM.; García Gómez, H. (2020). Integration of metal organic frameworks with enzymes as multifunctional solids for cascade catalysis. Dalton Transactions. 49(32):11059-11072. https://doi.org/10.1039/d0dt02045a

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/166518

Ficheros en el ítem

Metadatos del ítem

Título: Integration of metal organic frameworks with enzymes as multifunctional solids for cascade catalysis
Autor: Dhakshinamoorthy, Amarajothi Asiri, Abdullah M. García Gómez, Hermenegildo
Entidad UPV: Universitat Politècnica de València. Departamento de Química - Departament de Química
Fecha difusión:
Fecha de fin de embargo: 2021-06-25
Resumen:
[EN] Enzymes exhibit a large degree of compatibility with metal-organic frameworks (MOFs) which allows the development of multicomponent catalysts consisting of enzymes adsorbed or occluded by MOFs. The combination of ...[+]
Derechos de uso: Reserva de todos los derechos
Fuente:
Dalton Transactions. (issn: 1477-9226 )
DOI: 10.1039/d0dt02045a
Editorial:
The Royal Society of Chemistry
Versión del editor: https://doi.org/10.1039/d0dt02045a
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//SEV-2012-0267/
info:eu-repo/grantAgreement/DST//EMR%2F2016%2F006500/
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2017%2F083/
MICINN/CTQ2018-980237-CO2-1
Agradecimientos:
Financial support by the Spanish Ministry of Science and Innovation (Severo Ochoa and CTQ2018-980237-CO2-1) and Generalitat Valenciana (Prometeo 2017-083) is gratefully acknowledged. A. D. thanks the University Grants ...[+]
Tipo: Artículo

References

Koshland, D. E. (1958). Application of a Theory of Enzyme Specificity to Protein Synthesis. Proceedings of the National Academy of Sciences, 44(2), 98-104. doi:10.1073/pnas.44.2.98

Stanton, R. V., Peräkylä, M., Bakowies, D., & Kollman, P. A. (1998). Combined ab initio and Free Energy Calculations To Study Reactions in Enzymes and Solution:  Amide Hydrolysis in Trypsin and Aqueous Solution. Journal of the American Chemical Society, 120(14), 3448-3457. doi:10.1021/ja972723x

Kuhn, B., & Kollman, P. A. (2000). QM−FE and Molecular Dynamics Calculations on Catechol O-Methyltransferase:  Free Energy of Activation in the Enzyme and in Aqueous Solution and Regioselectivity of the Enzyme-Catalyzed Reaction. Journal of the American Chemical Society, 122(11), 2586-2596. doi:10.1021/ja992218v [+]
Koshland, D. E. (1958). Application of a Theory of Enzyme Specificity to Protein Synthesis. Proceedings of the National Academy of Sciences, 44(2), 98-104. doi:10.1073/pnas.44.2.98

Stanton, R. V., Peräkylä, M., Bakowies, D., & Kollman, P. A. (1998). Combined ab initio and Free Energy Calculations To Study Reactions in Enzymes and Solution:  Amide Hydrolysis in Trypsin and Aqueous Solution. Journal of the American Chemical Society, 120(14), 3448-3457. doi:10.1021/ja972723x

Kuhn, B., & Kollman, P. A. (2000). QM−FE and Molecular Dynamics Calculations on Catechol O-Methyltransferase:  Free Energy of Activation in the Enzyme and in Aqueous Solution and Regioselectivity of the Enzyme-Catalyzed Reaction. Journal of the American Chemical Society, 122(11), 2586-2596. doi:10.1021/ja992218v

Bruice, T. C., & Lightstone, F. C. (1998). Ground State and Transition State Contributions to the Rates of Intramolecular and Enzymatic Reactions. Accounts of Chemical Research, 32(2), 127-136. doi:10.1021/ar960131y

Tsitkov, S., & Hess, H. (2019). Design Principles for a Compartmentalized Enzyme Cascade Reaction. ACS Catalysis, 9(3), 2432-2439. doi:10.1021/acscatal.8b04419

Muschiol, J., Peters, C., Oberleitner, N., Mihovilovic, M. D., Bornscheuer, U. T., & Rudroff, F. (2015). Cascade catalysis – strategies and challenges en route to preparative synthetic biology. Chemical Communications, 51(27), 5798-5811. doi:10.1039/c4cc08752f

Liu, Z., Lv, Y., & An, Z. (2017). Enzymatic Cascade Catalysis for the Synthesis of Multiblock and Ultrahigh-Molecular-Weight Polymers with Oxygen Tolerance. Angewandte Chemie International Edition, 56(44), 13852-13856. doi:10.1002/anie.201707993

Wang, H., Cheng, L., Ma, S., Ding, L., Zhang, W., Xu, Z., … Gao, L. (2020). Self-Assembled Multiple-Enzyme Composites for Enhanced Synergistic Cancer Starving–Catalytic Therapy. ACS Applied Materials & Interfaces, 12(18), 20191-20201. doi:10.1021/acsami.0c02006

Majewski, M. B., Howarth, A. J., Li, P., Wasielewski, M. R., Hupp, J. T., & Farha, O. K. (2017). Enzyme encapsulation in metal–organic frameworks for applications in catalysis. CrystEngComm, 19(29), 4082-4091. doi:10.1039/c7ce00022g

Chen, L., & Xu, Q. (2019). Metal-Organic Framework Composites for Catalysis. Matter, 1(1), 57-89. doi:10.1016/j.matt.2019.05.018

Lian, X., Fang, Y., Joseph, E., Wang, Q., Li, J., Banerjee, S., … Zhou, H.-C. (2017). Enzyme–MOF (metal–organic framework) composites. Chemical Society Reviews, 46(11), 3386-3401. doi:10.1039/c7cs00058h

Drout, R. J., Robison, L., & Farha, O. K. (2019). Catalytic applications of enzymes encapsulated in metal–organic frameworks. Coordination Chemistry Reviews, 381, 151-160. doi:10.1016/j.ccr.2018.11.009

Wei, T.-H., Wu, S.-H., Huang, Y.-D., Lo, W.-S., Williams, B. P., Chen, S.-Y., … Shieh, F.-K. (2019). Rapid mechanochemical encapsulation of biocatalysts into robust metal–organic frameworks. Nature Communications, 10(1). doi:10.1038/s41467-019-12966-0

Zhang, S., Du, M., Shao, P., Wang, L., Ye, J., Chen, J., & Chen, J. (2018). Carbonic Anhydrase Enzyme-MOFs Composite with a Superior Catalytic Performance to Promote CO2 Absorption into Tertiary Amine Solution. Environmental Science & Technology, 52(21), 12708-12716. doi:10.1021/acs.est.8b04671

Farrusseng, D., Aguado, S., & Pinel, C. (2009). Metal-Organic Frameworks: Opportunities for Catalysis. Angewandte Chemie International Edition, 48(41), 7502-7513. doi:10.1002/anie.200806063

Zhu, L., Liu, X.-Q., Jiang, H.-L., & Sun, L.-B. (2017). Metal–Organic Frameworks for Heterogeneous Basic Catalysis. Chemical Reviews, 117(12), 8129-8176. doi:10.1021/acs.chemrev.7b00091

Dhakshinamoorthy, A., Li, Z., & Garcia, H. (2018). Catalysis and photocatalysis by metal organic frameworks. Chemical Society Reviews, 47(22), 8134-8172. doi:10.1039/c8cs00256h

Farha, O. K., Eryazici, I., Jeong, N. C., Hauser, B. G., Wilmer, C. E., Sarjeant, A. A., … Hupp, J. T. (2012). Metal–Organic Framework Materials with Ultrahigh Surface Areas: Is the Sky the Limit? Journal of the American Chemical Society, 134(36), 15016-15021. doi:10.1021/ja3055639

Martin, R. L., & Haranczyk, M. (2013). Exploring frontiers of high surface area metal–organic frameworks. Chemical Science, 4(4), 1781. doi:10.1039/c3sc00033h

He, Y., Li, B., O’Keeffe, M., & Chen, B. (2014). Multifunctional metal–organic frameworks constructed from meta-benzenedicarboxylate units. Chem. Soc. Rev., 43(16), 5618-5656. doi:10.1039/c4cs00041b

Yuan, S., Feng, L., Wang, K., Pang, J., Bosch, M., Lollar, C., … Zhou, H. (2018). Stable Metal–Organic Frameworks: Design, Synthesis, and Applications. Advanced Materials, 30(37), 1704303. doi:10.1002/adma.201704303

Dhakshinamoorthy, A., Navalon, S., Asiri, A. M., & Garcia, H. (2020). Metal organic frameworks as solid catalysts for liquid-phase continuous flow reactions. Chemical Communications, 56(1), 26-45. doi:10.1039/c9cc07953j

Dhakshinamoorthy, A., Santiago-Portillo, A., Asiri, A. M., & Garcia, H. (2019). Engineering UiO-66 Metal Organic Framework for Heterogeneous Catalysis. ChemCatChem, 11(3), 899-923. doi:10.1002/cctc.201801452

Dhakshinamoorthy, A., Asiri, A. M., & Garcia, H. (2019). 2D Metal–Organic Frameworks as Multifunctional Materials in Heterogeneous Catalysis and Electro/Photocatalysis. Advanced Materials, 31(41), 1900617. doi:10.1002/adma.201900617

Gkaniatsou, E., Sicard, C., Ricoux, R., Mahy, J.-P., Steunou, N., & Serre, C. (2017). Metal–organic frameworks: a novel host platform for enzymatic catalysis and detection. Materials Horizons, 4(1), 55-63. doi:10.1039/c6mh00312e

Cai, X., Zhang, M., Wei, W., Zhang, Y., Wang, Z., & Zheng, J. (2019). The Immobilization of Candida antarctica lipase B by ZIF-8 encapsulation and macroporous resin adsorption: preparation and characterizations. Biotechnology Letters, 42(2), 269-276. doi:10.1007/s10529-019-02771-6

Lin, C., Xu, K., Zheng, R., & Zheng, Y. (2019). Immobilization of amidase into a magnetic hierarchically porous metal–organic framework for efficient biocatalysis. Chemical Communications, 55(40), 5697-5700. doi:10.1039/c9cc02038a

Nadar, S. S., Vaidya, L., & Rathod, V. K. (2020). Enzyme embedded metal organic framework (enzyme–MOF): De novo approaches for immobilization. International Journal of Biological Macromolecules, 149, 861-876. doi:10.1016/j.ijbiomac.2020.01.240

Dutta, S., Kumari, N., Dubbu, S., Jang, S. W., Kumar, A., Ohtsu, H., … Lee, I. S. (2020). Highly Mesoporous Metal‐Organic Frameworks as Synergistic Multimodal Catalytic Platforms for Divergent Cascade Reactions. Angewandte Chemie International Edition, 59(9), 3416-3422. doi:10.1002/anie.201916578

Wang, Y., Zhang, N., Zhang, E., Han, Y., Qi, Z., Ansorge-Schumacher, M. B., … Wu, C. (2019). Heterogeneous Metal-Organic-Framework-Based Biohybrid Catalysts for Cascade Reactions in Organic Solvent. Chemistry - A European Journal, 25(7), 1716-1721. doi:10.1002/chem.201805680

Li, T., Qiu, H., Liu, N., Li, J., Bao, Y., & Tong, W. (2020). Construction of Self-activated Cascade Metal−Organic Framework/Enzyme Hybrid Nanoreactors as Antibacterial Agents. Colloids and Surfaces B: Biointerfaces, 191, 111001. doi:10.1016/j.colsurfb.2020.111001

Xu, W., Jiao, L., Yan, H., Wu, Y., Chen, L., Gu, W., … Zhu, C. (2019). Glucose Oxidase-Integrated Metal–Organic Framework Hybrids as Biomimetic Cascade Nanozymes for Ultrasensitive Glucose Biosensing. ACS Applied Materials & Interfaces, 11(25), 22096-22101. doi:10.1021/acsami.9b03004

Tan, W., Wei, T., Huo, J., Loubidi, M., Liu, T., Liang, Y., & Deng, L. (2019). Electrostatic Interaction-Induced Formation of Enzyme-on-MOF as Chemo-Biocatalyst for Cascade Reaction with Unexpectedly Acid-Stable Catalytic Performance. ACS Applied Materials & Interfaces, 11(40), 36782-36788. doi:10.1021/acsami.9b13080

Liu, X., Qi, W., Wang, Y., Lin, D., Yang, X., Su, R., & He, Z. (2018). Rational Design of Mimic Multienzyme Systems in Hierarchically Porous Biomimetic Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 10(39), 33407-33415. doi:10.1021/acsami.8b09388

Zhong, X., Xia, H., Huang, W., Li, Z., & Jiang, Y. (2020). Biomimetic metal-organic frameworks mediated hybrid multi-enzyme mimic for tandem catalysis. Chemical Engineering Journal, 381, 122758. doi:10.1016/j.cej.2019.122758

Quin, M. B., Wallin, K. K., Zhang, G., & Schmidt-Dannert, C. (2017). Spatial organization of multi-enzyme biocatalytic cascades. Organic & Biomolecular Chemistry, 15(20), 4260-4271. doi:10.1039/c7ob00391a

Chen, G., Huang, S., Kou, X., Wei, S., Huang, S., Jiang, S., … Ouyang, G. (2019). A Convenient and Versatile Amino‐Acid‐Boosted Biomimetic Strategy for the Nondestructive Encapsulation of Biomacromolecules within Metal–Organic Frameworks. Angewandte Chemie International Edition, 58(5), 1463-1467. doi:10.1002/anie.201813060

Palmiter, R. D. (1998). The elusive function of metallothioneins. Proceedings of the National Academy of Sciences, 95(15), 8428-8430. doi:10.1073/pnas.95.15.8428

Chen, W.-H., Vázquez-González, M., Zoabi, A., Abu-Reziq, R., & Willner, I. (2018). Biocatalytic cascades driven by enzymes encapsulated in metal–organic framework nanoparticles. Nature Catalysis, 1(9), 689-695. doi:10.1038/s41929-018-0117-2

Mu, J., Wang, Y., Zhao, M., & Zhang, L. (2012). Intrinsic peroxidase-like activity and catalase-like activity of Co3O4 nanoparticles. Chemical Communications, 48(19), 2540. doi:10.1039/c2cc17013b

Song, Y., Qu, K., Zhao, C., Ren, J., & Qu, X. (2010). Graphene Oxide: Intrinsic Peroxidase Catalytic Activity and Its Application to Glucose Detection. Advanced Materials, 22(19), 2206-2210. doi:10.1002/adma.200903783

Wei, H., & Wang, E. (2008). Fe3O4 Magnetic Nanoparticles as Peroxidase Mimetics and Their Applications in H2O2 and Glucose Detection. Analytical Chemistry, 80(6), 2250-2254. doi:10.1021/ac702203f

Yan, Q., Peng, B., Su, G., Cohan, B. E., Major, T. C., & Meyerhoff, M. E. (2011). Measurement of Tear Glucose Levels with Amperometric Glucose Biosensor/Capillary Tube Configuration. Analytical Chemistry, 83(21), 8341-8346. doi:10.1021/ac201700c

Wu, X., Ge, J., Yang, C., Hou, M., & Liu, Z. (2015). Facile synthesis of multiple enzyme-containing metal–organic frameworks in a biomolecule-friendly environment. Chemical Communications, 51(69), 13408-13411. doi:10.1039/c5cc05136c

Song, J., He, W., Shen, H., Zhou, Z., Li, M., Su, P., & Yang, Y. (2019). Construction of multiple enzyme metal–organic frameworks biocatalyst via DNA scaffold: A promising strategy for enzyme encapsulation. Chemical Engineering Journal, 363, 174-182. doi:10.1016/j.cej.2019.01.138

Bai, J., Peng, C., Guo, L., & Zhou, M. (2019). Metal–Organic Framework-Integrated Enzymes as Bioreactor for Enhanced Therapy against Solid Tumor via a Cascade Catalytic Reaction. ACS Biomaterials Science & Engineering, 5(11), 6207-6215. doi:10.1021/acsbiomaterials.9b01200

Cao, Y., Li, X., Xiong, J., Wang, L., Yan, L.-T., & Ge, J. (2019). Investigating the origin of high efficiency in confined multienzyme catalysis. Nanoscale, 11(45), 22108-22117. doi:10.1039/c9nr07381g

Chen, S., Wen, L., Svec, F., Tan, T., & Lv, Y. (2017). Magnetic metal–organic frameworks as scaffolds for spatial co-location and positional assembly of multi-enzyme systems enabling enhanced cascade biocatalysis. RSC Advances, 7(34), 21205-21213. doi:10.1039/c7ra02291c

You, Y., Xu, D., Pan, X., & Ma, X. (2019). Self-propelled enzymatic nanomotors for enhancing synergetic photodynamic and starvation therapy by self-accelerated cascade reactions. Applied Materials Today, 16, 508-517. doi:10.1016/j.apmt.2019.07.008

Zhou, X., Guo, S., Gao, J., Zhao, J., Xue, S., & Xu, W. (2017). Glucose oxidase-initiated cascade catalysis for sensitive impedimetric aptasensor based on metal-organic frameworks functionalized with Pt nanoparticles and hemin/G-quadruplex as mimicking peroxidases. Biosensors and Bioelectronics, 98, 83-90. doi:10.1016/j.bios.2017.06.039

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem