Mostrar el registro sencillo del ítem
dc.contributor.author | Dhakshinamoorthy, Amarajothi | es_ES |
dc.contributor.author | Asiri, Abdullah M. | es_ES |
dc.contributor.author | García Gómez, Hermenegildo | es_ES |
dc.date.accessioned | 2021-05-20T03:32:52Z | |
dc.date.available | 2021-05-20T03:32:52Z | |
dc.date.issued | 2020-08-28 | es_ES |
dc.identifier.issn | 1477-9226 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/166518 | |
dc.description.abstract | [EN] Enzymes exhibit a large degree of compatibility with metal-organic frameworks (MOFs) which allows the development of multicomponent catalysts consisting of enzymes adsorbed or occluded by MOFs. The combination of enzymes and MOFs in a multicomponent catalyst can be used to promote cascade reactions in which two or more individual reactions are performed in a single step. Cascade reactions take place due to the cooperation of active sites present on the MOF with the enzyme. A survey of the available data establishes that often an enzyme undergoes stabilization by association with a MOF and the system exhibits notable recyclability. In addition, the existence of synergism is observed as a consequence of the close proximity of all the required active sites in the multicomponent catalyst. After an introductory section describing the specific features and properties of enzyme-MOF assemblies, the main part of the present review focuses on the description of the cascade reactions that have been reported with commercial enzymes associated with MOFs, paying special attention to the advantages derived from the multicomponent catalyst. Related to the catalytic activity to metabolize glucose, generating reactive oxygen species (ROS) and decreasing the solution pH, an independent section describes the recent use of enzyme-MOF catalysts in cancer therapy. The last paragraphs summarize the current state of the art and provide our view on future developments in this field. | es_ES |
dc.description.sponsorship | Financial support by the Spanish Ministry of Science and Innovation (Severo Ochoa and CTQ2018-980237-CO2-1) and Generalitat Valenciana (Prometeo 2017-083) is gratefully acknowledged. A. D. thanks the University Grants Commission (UGC), New Delhi, for the award of an Assistant Professorship under its Faculty Recharge Programme. A. D. also thanks the Department of Science and Technology, India, for the financial support through Extra Mural Research Funding (EMR/2016/006500). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | The Royal Society of Chemistry | es_ES |
dc.relation | MICINN/CTQ2018-980237-CO2-1 | es_ES |
dc.relation.ispartof | Dalton Transactions | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject.classification | QUIMICA ORGANICA | es_ES |
dc.title | Integration of metal organic frameworks with enzymes as multifunctional solids for cascade catalysis | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1039/d0dt02045a | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//SEV-2012-0267/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/DST//EMR%2F2016%2F006500/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2017%2F083/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.date.embargoEndDate | 2021-06-25 | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.description.bibliographicCitation | Dhakshinamoorthy, A.; Asiri, AM.; García Gómez, H. (2020). Integration of metal organic frameworks with enzymes as multifunctional solids for cascade catalysis. Dalton Transactions. 49(32):11059-11072. https://doi.org/10.1039/d0dt02045a | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1039/d0dt02045a | es_ES |
dc.description.upvformatpinicio | 11059 | es_ES |
dc.description.upvformatpfin | 11072 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 49 | es_ES |
dc.description.issue | 32 | es_ES |
dc.identifier.pmid | 32808625 | es_ES |
dc.relation.pasarela | S\433394 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | University Grants Commission, India | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Department of Science and Technology, Ministry of Science and Technology, India | es_ES |
dc.description.references | Koshland, D. E. (1958). Application of a Theory of Enzyme Specificity to Protein Synthesis. Proceedings of the National Academy of Sciences, 44(2), 98-104. doi:10.1073/pnas.44.2.98 | es_ES |
dc.description.references | Stanton, R. V., Peräkylä, M., Bakowies, D., & Kollman, P. A. (1998). Combined ab initio and Free Energy Calculations To Study Reactions in Enzymes and Solution: Amide Hydrolysis in Trypsin and Aqueous Solution. Journal of the American Chemical Society, 120(14), 3448-3457. doi:10.1021/ja972723x | es_ES |
dc.description.references | Kuhn, B., & Kollman, P. A. (2000). QM−FE and Molecular Dynamics Calculations on Catechol O-Methyltransferase: Free Energy of Activation in the Enzyme and in Aqueous Solution and Regioselectivity of the Enzyme-Catalyzed Reaction. Journal of the American Chemical Society, 122(11), 2586-2596. doi:10.1021/ja992218v | es_ES |
dc.description.references | Bruice, T. C., & Lightstone, F. C. (1998). Ground State and Transition State Contributions to the Rates of Intramolecular and Enzymatic Reactions. Accounts of Chemical Research, 32(2), 127-136. doi:10.1021/ar960131y | es_ES |
dc.description.references | Tsitkov, S., & Hess, H. (2019). Design Principles for a Compartmentalized Enzyme Cascade Reaction. ACS Catalysis, 9(3), 2432-2439. doi:10.1021/acscatal.8b04419 | es_ES |
dc.description.references | Muschiol, J., Peters, C., Oberleitner, N., Mihovilovic, M. D., Bornscheuer, U. T., & Rudroff, F. (2015). Cascade catalysis – strategies and challenges en route to preparative synthetic biology. Chemical Communications, 51(27), 5798-5811. doi:10.1039/c4cc08752f | es_ES |
dc.description.references | Liu, Z., Lv, Y., & An, Z. (2017). Enzymatic Cascade Catalysis for the Synthesis of Multiblock and Ultrahigh-Molecular-Weight Polymers with Oxygen Tolerance. Angewandte Chemie International Edition, 56(44), 13852-13856. doi:10.1002/anie.201707993 | es_ES |
dc.description.references | Wang, H., Cheng, L., Ma, S., Ding, L., Zhang, W., Xu, Z., … Gao, L. (2020). Self-Assembled Multiple-Enzyme Composites for Enhanced Synergistic Cancer Starving–Catalytic Therapy. ACS Applied Materials & Interfaces, 12(18), 20191-20201. doi:10.1021/acsami.0c02006 | es_ES |
dc.description.references | Majewski, M. B., Howarth, A. J., Li, P., Wasielewski, M. R., Hupp, J. T., & Farha, O. K. (2017). Enzyme encapsulation in metal–organic frameworks for applications in catalysis. CrystEngComm, 19(29), 4082-4091. doi:10.1039/c7ce00022g | es_ES |
dc.description.references | Chen, L., & Xu, Q. (2019). Metal-Organic Framework Composites for Catalysis. Matter, 1(1), 57-89. doi:10.1016/j.matt.2019.05.018 | es_ES |
dc.description.references | Lian, X., Fang, Y., Joseph, E., Wang, Q., Li, J., Banerjee, S., … Zhou, H.-C. (2017). Enzyme–MOF (metal–organic framework) composites. Chemical Society Reviews, 46(11), 3386-3401. doi:10.1039/c7cs00058h | es_ES |
dc.description.references | Drout, R. J., Robison, L., & Farha, O. K. (2019). Catalytic applications of enzymes encapsulated in metal–organic frameworks. Coordination Chemistry Reviews, 381, 151-160. doi:10.1016/j.ccr.2018.11.009 | es_ES |
dc.description.references | Wei, T.-H., Wu, S.-H., Huang, Y.-D., Lo, W.-S., Williams, B. P., Chen, S.-Y., … Shieh, F.-K. (2019). Rapid mechanochemical encapsulation of biocatalysts into robust metal–organic frameworks. Nature Communications, 10(1). doi:10.1038/s41467-019-12966-0 | es_ES |
dc.description.references | Zhang, S., Du, M., Shao, P., Wang, L., Ye, J., Chen, J., & Chen, J. (2018). Carbonic Anhydrase Enzyme-MOFs Composite with a Superior Catalytic Performance to Promote CO2 Absorption into Tertiary Amine Solution. Environmental Science & Technology, 52(21), 12708-12716. doi:10.1021/acs.est.8b04671 | es_ES |
dc.description.references | Farrusseng, D., Aguado, S., & Pinel, C. (2009). Metal-Organic Frameworks: Opportunities for Catalysis. Angewandte Chemie International Edition, 48(41), 7502-7513. doi:10.1002/anie.200806063 | es_ES |
dc.description.references | Zhu, L., Liu, X.-Q., Jiang, H.-L., & Sun, L.-B. (2017). Metal–Organic Frameworks for Heterogeneous Basic Catalysis. Chemical Reviews, 117(12), 8129-8176. doi:10.1021/acs.chemrev.7b00091 | es_ES |
dc.description.references | Dhakshinamoorthy, A., Li, Z., & Garcia, H. (2018). Catalysis and photocatalysis by metal organic frameworks. Chemical Society Reviews, 47(22), 8134-8172. doi:10.1039/c8cs00256h | es_ES |
dc.description.references | Farha, O. K., Eryazici, I., Jeong, N. C., Hauser, B. G., Wilmer, C. E., Sarjeant, A. A., … Hupp, J. T. (2012). Metal–Organic Framework Materials with Ultrahigh Surface Areas: Is the Sky the Limit? Journal of the American Chemical Society, 134(36), 15016-15021. doi:10.1021/ja3055639 | es_ES |
dc.description.references | Martin, R. L., & Haranczyk, M. (2013). Exploring frontiers of high surface area metal–organic frameworks. Chemical Science, 4(4), 1781. doi:10.1039/c3sc00033h | es_ES |
dc.description.references | He, Y., Li, B., O’Keeffe, M., & Chen, B. (2014). Multifunctional metal–organic frameworks constructed from meta-benzenedicarboxylate units. Chem. Soc. Rev., 43(16), 5618-5656. doi:10.1039/c4cs00041b | es_ES |
dc.description.references | Yuan, S., Feng, L., Wang, K., Pang, J., Bosch, M., Lollar, C., … Zhou, H. (2018). Stable Metal–Organic Frameworks: Design, Synthesis, and Applications. Advanced Materials, 30(37), 1704303. doi:10.1002/adma.201704303 | es_ES |
dc.description.references | Dhakshinamoorthy, A., Navalon, S., Asiri, A. M., & Garcia, H. (2020). Metal organic frameworks as solid catalysts for liquid-phase continuous flow reactions. Chemical Communications, 56(1), 26-45. doi:10.1039/c9cc07953j | es_ES |
dc.description.references | Dhakshinamoorthy, A., Santiago-Portillo, A., Asiri, A. M., & Garcia, H. (2019). Engineering UiO-66 Metal Organic Framework for Heterogeneous Catalysis. ChemCatChem, 11(3), 899-923. doi:10.1002/cctc.201801452 | es_ES |
dc.description.references | Dhakshinamoorthy, A., Asiri, A. M., & Garcia, H. (2019). 2D Metal–Organic Frameworks as Multifunctional Materials in Heterogeneous Catalysis and Electro/Photocatalysis. Advanced Materials, 31(41), 1900617. doi:10.1002/adma.201900617 | es_ES |
dc.description.references | Gkaniatsou, E., Sicard, C., Ricoux, R., Mahy, J.-P., Steunou, N., & Serre, C. (2017). Metal–organic frameworks: a novel host platform for enzymatic catalysis and detection. Materials Horizons, 4(1), 55-63. doi:10.1039/c6mh00312e | es_ES |
dc.description.references | Cai, X., Zhang, M., Wei, W., Zhang, Y., Wang, Z., & Zheng, J. (2019). The Immobilization of Candida antarctica lipase B by ZIF-8 encapsulation and macroporous resin adsorption: preparation and characterizations. Biotechnology Letters, 42(2), 269-276. doi:10.1007/s10529-019-02771-6 | es_ES |
dc.description.references | Lin, C., Xu, K., Zheng, R., & Zheng, Y. (2019). Immobilization of amidase into a magnetic hierarchically porous metal–organic framework for efficient biocatalysis. Chemical Communications, 55(40), 5697-5700. doi:10.1039/c9cc02038a | es_ES |
dc.description.references | Nadar, S. S., Vaidya, L., & Rathod, V. K. (2020). Enzyme embedded metal organic framework (enzyme–MOF): De novo approaches for immobilization. International Journal of Biological Macromolecules, 149, 861-876. doi:10.1016/j.ijbiomac.2020.01.240 | es_ES |
dc.description.references | Dutta, S., Kumari, N., Dubbu, S., Jang, S. W., Kumar, A., Ohtsu, H., … Lee, I. S. (2020). Highly Mesoporous Metal‐Organic Frameworks as Synergistic Multimodal Catalytic Platforms for Divergent Cascade Reactions. Angewandte Chemie International Edition, 59(9), 3416-3422. doi:10.1002/anie.201916578 | es_ES |
dc.description.references | Wang, Y., Zhang, N., Zhang, E., Han, Y., Qi, Z., Ansorge-Schumacher, M. B., … Wu, C. (2019). Heterogeneous Metal-Organic-Framework-Based Biohybrid Catalysts for Cascade Reactions in Organic Solvent. Chemistry - A European Journal, 25(7), 1716-1721. doi:10.1002/chem.201805680 | es_ES |
dc.description.references | Li, T., Qiu, H., Liu, N., Li, J., Bao, Y., & Tong, W. (2020). Construction of Self-activated Cascade Metal−Organic Framework/Enzyme Hybrid Nanoreactors as Antibacterial Agents. Colloids and Surfaces B: Biointerfaces, 191, 111001. doi:10.1016/j.colsurfb.2020.111001 | es_ES |
dc.description.references | Xu, W., Jiao, L., Yan, H., Wu, Y., Chen, L., Gu, W., … Zhu, C. (2019). Glucose Oxidase-Integrated Metal–Organic Framework Hybrids as Biomimetic Cascade Nanozymes for Ultrasensitive Glucose Biosensing. ACS Applied Materials & Interfaces, 11(25), 22096-22101. doi:10.1021/acsami.9b03004 | es_ES |
dc.description.references | Tan, W., Wei, T., Huo, J., Loubidi, M., Liu, T., Liang, Y., & Deng, L. (2019). Electrostatic Interaction-Induced Formation of Enzyme-on-MOF as Chemo-Biocatalyst for Cascade Reaction with Unexpectedly Acid-Stable Catalytic Performance. ACS Applied Materials & Interfaces, 11(40), 36782-36788. doi:10.1021/acsami.9b13080 | es_ES |
dc.description.references | Liu, X., Qi, W., Wang, Y., Lin, D., Yang, X., Su, R., & He, Z. (2018). Rational Design of Mimic Multienzyme Systems in Hierarchically Porous Biomimetic Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 10(39), 33407-33415. doi:10.1021/acsami.8b09388 | es_ES |
dc.description.references | Zhong, X., Xia, H., Huang, W., Li, Z., & Jiang, Y. (2020). Biomimetic metal-organic frameworks mediated hybrid multi-enzyme mimic for tandem catalysis. Chemical Engineering Journal, 381, 122758. doi:10.1016/j.cej.2019.122758 | es_ES |
dc.description.references | Quin, M. B., Wallin, K. K., Zhang, G., & Schmidt-Dannert, C. (2017). Spatial organization of multi-enzyme biocatalytic cascades. Organic & Biomolecular Chemistry, 15(20), 4260-4271. doi:10.1039/c7ob00391a | es_ES |
dc.description.references | Chen, G., Huang, S., Kou, X., Wei, S., Huang, S., Jiang, S., … Ouyang, G. (2019). A Convenient and Versatile Amino‐Acid‐Boosted Biomimetic Strategy for the Nondestructive Encapsulation of Biomacromolecules within Metal–Organic Frameworks. Angewandte Chemie International Edition, 58(5), 1463-1467. doi:10.1002/anie.201813060 | es_ES |
dc.description.references | Palmiter, R. D. (1998). The elusive function of metallothioneins. Proceedings of the National Academy of Sciences, 95(15), 8428-8430. doi:10.1073/pnas.95.15.8428 | es_ES |
dc.description.references | Chen, W.-H., Vázquez-González, M., Zoabi, A., Abu-Reziq, R., & Willner, I. (2018). Biocatalytic cascades driven by enzymes encapsulated in metal–organic framework nanoparticles. Nature Catalysis, 1(9), 689-695. doi:10.1038/s41929-018-0117-2 | es_ES |
dc.description.references | Mu, J., Wang, Y., Zhao, M., & Zhang, L. (2012). Intrinsic peroxidase-like activity and catalase-like activity of Co3O4 nanoparticles. Chemical Communications, 48(19), 2540. doi:10.1039/c2cc17013b | es_ES |
dc.description.references | Song, Y., Qu, K., Zhao, C., Ren, J., & Qu, X. (2010). Graphene Oxide: Intrinsic Peroxidase Catalytic Activity and Its Application to Glucose Detection. Advanced Materials, 22(19), 2206-2210. doi:10.1002/adma.200903783 | es_ES |
dc.description.references | Wei, H., & Wang, E. (2008). Fe3O4 Magnetic Nanoparticles as Peroxidase Mimetics and Their Applications in H2O2 and Glucose Detection. Analytical Chemistry, 80(6), 2250-2254. doi:10.1021/ac702203f | es_ES |
dc.description.references | Yan, Q., Peng, B., Su, G., Cohan, B. E., Major, T. C., & Meyerhoff, M. E. (2011). Measurement of Tear Glucose Levels with Amperometric Glucose Biosensor/Capillary Tube Configuration. Analytical Chemistry, 83(21), 8341-8346. doi:10.1021/ac201700c | es_ES |
dc.description.references | Wu, X., Ge, J., Yang, C., Hou, M., & Liu, Z. (2015). Facile synthesis of multiple enzyme-containing metal–organic frameworks in a biomolecule-friendly environment. Chemical Communications, 51(69), 13408-13411. doi:10.1039/c5cc05136c | es_ES |
dc.description.references | Song, J., He, W., Shen, H., Zhou, Z., Li, M., Su, P., & Yang, Y. (2019). Construction of multiple enzyme metal–organic frameworks biocatalyst via DNA scaffold: A promising strategy for enzyme encapsulation. Chemical Engineering Journal, 363, 174-182. doi:10.1016/j.cej.2019.01.138 | es_ES |
dc.description.references | Bai, J., Peng, C., Guo, L., & Zhou, M. (2019). Metal–Organic Framework-Integrated Enzymes as Bioreactor for Enhanced Therapy against Solid Tumor via a Cascade Catalytic Reaction. ACS Biomaterials Science & Engineering, 5(11), 6207-6215. doi:10.1021/acsbiomaterials.9b01200 | es_ES |
dc.description.references | Cao, Y., Li, X., Xiong, J., Wang, L., Yan, L.-T., & Ge, J. (2019). Investigating the origin of high efficiency in confined multienzyme catalysis. Nanoscale, 11(45), 22108-22117. doi:10.1039/c9nr07381g | es_ES |
dc.description.references | Chen, S., Wen, L., Svec, F., Tan, T., & Lv, Y. (2017). Magnetic metal–organic frameworks as scaffolds for spatial co-location and positional assembly of multi-enzyme systems enabling enhanced cascade biocatalysis. RSC Advances, 7(34), 21205-21213. doi:10.1039/c7ra02291c | es_ES |
dc.description.references | You, Y., Xu, D., Pan, X., & Ma, X. (2019). Self-propelled enzymatic nanomotors for enhancing synergetic photodynamic and starvation therapy by self-accelerated cascade reactions. Applied Materials Today, 16, 508-517. doi:10.1016/j.apmt.2019.07.008 | es_ES |
dc.description.references | Zhou, X., Guo, S., Gao, J., Zhao, J., Xue, S., & Xu, W. (2017). Glucose oxidase-initiated cascade catalysis for sensitive impedimetric aptasensor based on metal-organic frameworks functionalized with Pt nanoparticles and hemin/G-quadruplex as mimicking peroxidases. Biosensors and Bioelectronics, 98, 83-90. doi:10.1016/j.bios.2017.06.039 | es_ES |