- -

Integration of metal organic frameworks with enzymes as multifunctional solids for cascade catalysis

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Integration of metal organic frameworks with enzymes as multifunctional solids for cascade catalysis

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Dhakshinamoorthy, Amarajothi es_ES
dc.contributor.author Asiri, Abdullah M. es_ES
dc.contributor.author García Gómez, Hermenegildo es_ES
dc.date.accessioned 2021-05-20T03:32:52Z
dc.date.available 2021-05-20T03:32:52Z
dc.date.issued 2020-08-28 es_ES
dc.identifier.issn 1477-9226 es_ES
dc.identifier.uri http://hdl.handle.net/10251/166518
dc.description.abstract [EN] Enzymes exhibit a large degree of compatibility with metal-organic frameworks (MOFs) which allows the development of multicomponent catalysts consisting of enzymes adsorbed or occluded by MOFs. The combination of enzymes and MOFs in a multicomponent catalyst can be used to promote cascade reactions in which two or more individual reactions are performed in a single step. Cascade reactions take place due to the cooperation of active sites present on the MOF with the enzyme. A survey of the available data establishes that often an enzyme undergoes stabilization by association with a MOF and the system exhibits notable recyclability. In addition, the existence of synergism is observed as a consequence of the close proximity of all the required active sites in the multicomponent catalyst. After an introductory section describing the specific features and properties of enzyme-MOF assemblies, the main part of the present review focuses on the description of the cascade reactions that have been reported with commercial enzymes associated with MOFs, paying special attention to the advantages derived from the multicomponent catalyst. Related to the catalytic activity to metabolize glucose, generating reactive oxygen species (ROS) and decreasing the solution pH, an independent section describes the recent use of enzyme-MOF catalysts in cancer therapy. The last paragraphs summarize the current state of the art and provide our view on future developments in this field. es_ES
dc.description.sponsorship Financial support by the Spanish Ministry of Science and Innovation (Severo Ochoa and CTQ2018-980237-CO2-1) and Generalitat Valenciana (Prometeo 2017-083) is gratefully acknowledged. A. D. thanks the University Grants Commission (UGC), New Delhi, for the award of an Assistant Professorship under its Faculty Recharge Programme. A. D. also thanks the Department of Science and Technology, India, for the financial support through Extra Mural Research Funding (EMR/2016/006500). es_ES
dc.language Inglés es_ES
dc.publisher The Royal Society of Chemistry es_ES
dc.relation MICINN/CTQ2018-980237-CO2-1 es_ES
dc.relation.ispartof Dalton Transactions es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Integration of metal organic frameworks with enzymes as multifunctional solids for cascade catalysis es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/d0dt02045a es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SEV-2012-0267/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/DST//EMR%2F2016%2F006500/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2017%2F083/ es_ES
dc.rights.accessRights Abierto es_ES
dc.date.embargoEndDate 2021-06-25 es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Dhakshinamoorthy, A.; Asiri, AM.; García Gómez, H. (2020). Integration of metal organic frameworks with enzymes as multifunctional solids for cascade catalysis. Dalton Transactions. 49(32):11059-11072. https://doi.org/10.1039/d0dt02045a es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1039/d0dt02045a es_ES
dc.description.upvformatpinicio 11059 es_ES
dc.description.upvformatpfin 11072 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 49 es_ES
dc.description.issue 32 es_ES
dc.identifier.pmid 32808625 es_ES
dc.relation.pasarela S\433394 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder University Grants Commission, India es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Department of Science and Technology, Ministry of Science and Technology, India es_ES
dc.description.references Koshland, D. E. (1958). Application of a Theory of Enzyme Specificity to Protein Synthesis. Proceedings of the National Academy of Sciences, 44(2), 98-104. doi:10.1073/pnas.44.2.98 es_ES
dc.description.references Stanton, R. V., Peräkylä, M., Bakowies, D., & Kollman, P. A. (1998). Combined ab initio and Free Energy Calculations To Study Reactions in Enzymes and Solution:  Amide Hydrolysis in Trypsin and Aqueous Solution. Journal of the American Chemical Society, 120(14), 3448-3457. doi:10.1021/ja972723x es_ES
dc.description.references Kuhn, B., & Kollman, P. A. (2000). QM−FE and Molecular Dynamics Calculations on Catechol O-Methyltransferase:  Free Energy of Activation in the Enzyme and in Aqueous Solution and Regioselectivity of the Enzyme-Catalyzed Reaction. Journal of the American Chemical Society, 122(11), 2586-2596. doi:10.1021/ja992218v es_ES
dc.description.references Bruice, T. C., & Lightstone, F. C. (1998). Ground State and Transition State Contributions to the Rates of Intramolecular and Enzymatic Reactions. Accounts of Chemical Research, 32(2), 127-136. doi:10.1021/ar960131y es_ES
dc.description.references Tsitkov, S., & Hess, H. (2019). Design Principles for a Compartmentalized Enzyme Cascade Reaction. ACS Catalysis, 9(3), 2432-2439. doi:10.1021/acscatal.8b04419 es_ES
dc.description.references Muschiol, J., Peters, C., Oberleitner, N., Mihovilovic, M. D., Bornscheuer, U. T., & Rudroff, F. (2015). Cascade catalysis – strategies and challenges en route to preparative synthetic biology. Chemical Communications, 51(27), 5798-5811. doi:10.1039/c4cc08752f es_ES
dc.description.references Liu, Z., Lv, Y., & An, Z. (2017). Enzymatic Cascade Catalysis for the Synthesis of Multiblock and Ultrahigh-Molecular-Weight Polymers with Oxygen Tolerance. Angewandte Chemie International Edition, 56(44), 13852-13856. doi:10.1002/anie.201707993 es_ES
dc.description.references Wang, H., Cheng, L., Ma, S., Ding, L., Zhang, W., Xu, Z., … Gao, L. (2020). Self-Assembled Multiple-Enzyme Composites for Enhanced Synergistic Cancer Starving–Catalytic Therapy. ACS Applied Materials & Interfaces, 12(18), 20191-20201. doi:10.1021/acsami.0c02006 es_ES
dc.description.references Majewski, M. B., Howarth, A. J., Li, P., Wasielewski, M. R., Hupp, J. T., & Farha, O. K. (2017). Enzyme encapsulation in metal–organic frameworks for applications in catalysis. CrystEngComm, 19(29), 4082-4091. doi:10.1039/c7ce00022g es_ES
dc.description.references Chen, L., & Xu, Q. (2019). Metal-Organic Framework Composites for Catalysis. Matter, 1(1), 57-89. doi:10.1016/j.matt.2019.05.018 es_ES
dc.description.references Lian, X., Fang, Y., Joseph, E., Wang, Q., Li, J., Banerjee, S., … Zhou, H.-C. (2017). Enzyme–MOF (metal–organic framework) composites. Chemical Society Reviews, 46(11), 3386-3401. doi:10.1039/c7cs00058h es_ES
dc.description.references Drout, R. J., Robison, L., & Farha, O. K. (2019). Catalytic applications of enzymes encapsulated in metal–organic frameworks. Coordination Chemistry Reviews, 381, 151-160. doi:10.1016/j.ccr.2018.11.009 es_ES
dc.description.references Wei, T.-H., Wu, S.-H., Huang, Y.-D., Lo, W.-S., Williams, B. P., Chen, S.-Y., … Shieh, F.-K. (2019). Rapid mechanochemical encapsulation of biocatalysts into robust metal–organic frameworks. Nature Communications, 10(1). doi:10.1038/s41467-019-12966-0 es_ES
dc.description.references Zhang, S., Du, M., Shao, P., Wang, L., Ye, J., Chen, J., & Chen, J. (2018). Carbonic Anhydrase Enzyme-MOFs Composite with a Superior Catalytic Performance to Promote CO2 Absorption into Tertiary Amine Solution. Environmental Science & Technology, 52(21), 12708-12716. doi:10.1021/acs.est.8b04671 es_ES
dc.description.references Farrusseng, D., Aguado, S., & Pinel, C. (2009). Metal-Organic Frameworks: Opportunities for Catalysis. Angewandte Chemie International Edition, 48(41), 7502-7513. doi:10.1002/anie.200806063 es_ES
dc.description.references Zhu, L., Liu, X.-Q., Jiang, H.-L., & Sun, L.-B. (2017). Metal–Organic Frameworks for Heterogeneous Basic Catalysis. Chemical Reviews, 117(12), 8129-8176. doi:10.1021/acs.chemrev.7b00091 es_ES
dc.description.references Dhakshinamoorthy, A., Li, Z., & Garcia, H. (2018). Catalysis and photocatalysis by metal organic frameworks. Chemical Society Reviews, 47(22), 8134-8172. doi:10.1039/c8cs00256h es_ES
dc.description.references Farha, O. K., Eryazici, I., Jeong, N. C., Hauser, B. G., Wilmer, C. E., Sarjeant, A. A., … Hupp, J. T. (2012). Metal–Organic Framework Materials with Ultrahigh Surface Areas: Is the Sky the Limit? Journal of the American Chemical Society, 134(36), 15016-15021. doi:10.1021/ja3055639 es_ES
dc.description.references Martin, R. L., & Haranczyk, M. (2013). Exploring frontiers of high surface area metal–organic frameworks. Chemical Science, 4(4), 1781. doi:10.1039/c3sc00033h es_ES
dc.description.references He, Y., Li, B., O’Keeffe, M., & Chen, B. (2014). Multifunctional metal–organic frameworks constructed from meta-benzenedicarboxylate units. Chem. Soc. Rev., 43(16), 5618-5656. doi:10.1039/c4cs00041b es_ES
dc.description.references Yuan, S., Feng, L., Wang, K., Pang, J., Bosch, M., Lollar, C., … Zhou, H. (2018). Stable Metal–Organic Frameworks: Design, Synthesis, and Applications. Advanced Materials, 30(37), 1704303. doi:10.1002/adma.201704303 es_ES
dc.description.references Dhakshinamoorthy, A., Navalon, S., Asiri, A. M., & Garcia, H. (2020). Metal organic frameworks as solid catalysts for liquid-phase continuous flow reactions. Chemical Communications, 56(1), 26-45. doi:10.1039/c9cc07953j es_ES
dc.description.references Dhakshinamoorthy, A., Santiago-Portillo, A., Asiri, A. M., & Garcia, H. (2019). Engineering UiO-66 Metal Organic Framework for Heterogeneous Catalysis. ChemCatChem, 11(3), 899-923. doi:10.1002/cctc.201801452 es_ES
dc.description.references Dhakshinamoorthy, A., Asiri, A. M., & Garcia, H. (2019). 2D Metal–Organic Frameworks as Multifunctional Materials in Heterogeneous Catalysis and Electro/Photocatalysis. Advanced Materials, 31(41), 1900617. doi:10.1002/adma.201900617 es_ES
dc.description.references Gkaniatsou, E., Sicard, C., Ricoux, R., Mahy, J.-P., Steunou, N., & Serre, C. (2017). Metal–organic frameworks: a novel host platform for enzymatic catalysis and detection. Materials Horizons, 4(1), 55-63. doi:10.1039/c6mh00312e es_ES
dc.description.references Cai, X., Zhang, M., Wei, W., Zhang, Y., Wang, Z., & Zheng, J. (2019). The Immobilization of Candida antarctica lipase B by ZIF-8 encapsulation and macroporous resin adsorption: preparation and characterizations. Biotechnology Letters, 42(2), 269-276. doi:10.1007/s10529-019-02771-6 es_ES
dc.description.references Lin, C., Xu, K., Zheng, R., & Zheng, Y. (2019). Immobilization of amidase into a magnetic hierarchically porous metal–organic framework for efficient biocatalysis. Chemical Communications, 55(40), 5697-5700. doi:10.1039/c9cc02038a es_ES
dc.description.references Nadar, S. S., Vaidya, L., & Rathod, V. K. (2020). Enzyme embedded metal organic framework (enzyme–MOF): De novo approaches for immobilization. International Journal of Biological Macromolecules, 149, 861-876. doi:10.1016/j.ijbiomac.2020.01.240 es_ES
dc.description.references Dutta, S., Kumari, N., Dubbu, S., Jang, S. W., Kumar, A., Ohtsu, H., … Lee, I. S. (2020). Highly Mesoporous Metal‐Organic Frameworks as Synergistic Multimodal Catalytic Platforms for Divergent Cascade Reactions. Angewandte Chemie International Edition, 59(9), 3416-3422. doi:10.1002/anie.201916578 es_ES
dc.description.references Wang, Y., Zhang, N., Zhang, E., Han, Y., Qi, Z., Ansorge-Schumacher, M. B., … Wu, C. (2019). Heterogeneous Metal-Organic-Framework-Based Biohybrid Catalysts for Cascade Reactions in Organic Solvent. Chemistry - A European Journal, 25(7), 1716-1721. doi:10.1002/chem.201805680 es_ES
dc.description.references Li, T., Qiu, H., Liu, N., Li, J., Bao, Y., & Tong, W. (2020). Construction of Self-activated Cascade Metal−Organic Framework/Enzyme Hybrid Nanoreactors as Antibacterial Agents. Colloids and Surfaces B: Biointerfaces, 191, 111001. doi:10.1016/j.colsurfb.2020.111001 es_ES
dc.description.references Xu, W., Jiao, L., Yan, H., Wu, Y., Chen, L., Gu, W., … Zhu, C. (2019). Glucose Oxidase-Integrated Metal–Organic Framework Hybrids as Biomimetic Cascade Nanozymes for Ultrasensitive Glucose Biosensing. ACS Applied Materials & Interfaces, 11(25), 22096-22101. doi:10.1021/acsami.9b03004 es_ES
dc.description.references Tan, W., Wei, T., Huo, J., Loubidi, M., Liu, T., Liang, Y., & Deng, L. (2019). Electrostatic Interaction-Induced Formation of Enzyme-on-MOF as Chemo-Biocatalyst for Cascade Reaction with Unexpectedly Acid-Stable Catalytic Performance. ACS Applied Materials & Interfaces, 11(40), 36782-36788. doi:10.1021/acsami.9b13080 es_ES
dc.description.references Liu, X., Qi, W., Wang, Y., Lin, D., Yang, X., Su, R., & He, Z. (2018). Rational Design of Mimic Multienzyme Systems in Hierarchically Porous Biomimetic Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 10(39), 33407-33415. doi:10.1021/acsami.8b09388 es_ES
dc.description.references Zhong, X., Xia, H., Huang, W., Li, Z., & Jiang, Y. (2020). Biomimetic metal-organic frameworks mediated hybrid multi-enzyme mimic for tandem catalysis. Chemical Engineering Journal, 381, 122758. doi:10.1016/j.cej.2019.122758 es_ES
dc.description.references Quin, M. B., Wallin, K. K., Zhang, G., & Schmidt-Dannert, C. (2017). Spatial organization of multi-enzyme biocatalytic cascades. Organic & Biomolecular Chemistry, 15(20), 4260-4271. doi:10.1039/c7ob00391a es_ES
dc.description.references Chen, G., Huang, S., Kou, X., Wei, S., Huang, S., Jiang, S., … Ouyang, G. (2019). A Convenient and Versatile Amino‐Acid‐Boosted Biomimetic Strategy for the Nondestructive Encapsulation of Biomacromolecules within Metal–Organic Frameworks. Angewandte Chemie International Edition, 58(5), 1463-1467. doi:10.1002/anie.201813060 es_ES
dc.description.references Palmiter, R. D. (1998). The elusive function of metallothioneins. Proceedings of the National Academy of Sciences, 95(15), 8428-8430. doi:10.1073/pnas.95.15.8428 es_ES
dc.description.references Chen, W.-H., Vázquez-González, M., Zoabi, A., Abu-Reziq, R., & Willner, I. (2018). Biocatalytic cascades driven by enzymes encapsulated in metal–organic framework nanoparticles. Nature Catalysis, 1(9), 689-695. doi:10.1038/s41929-018-0117-2 es_ES
dc.description.references Mu, J., Wang, Y., Zhao, M., & Zhang, L. (2012). Intrinsic peroxidase-like activity and catalase-like activity of Co3O4 nanoparticles. Chemical Communications, 48(19), 2540. doi:10.1039/c2cc17013b es_ES
dc.description.references Song, Y., Qu, K., Zhao, C., Ren, J., & Qu, X. (2010). Graphene Oxide: Intrinsic Peroxidase Catalytic Activity and Its Application to Glucose Detection. Advanced Materials, 22(19), 2206-2210. doi:10.1002/adma.200903783 es_ES
dc.description.references Wei, H., & Wang, E. (2008). Fe3O4 Magnetic Nanoparticles as Peroxidase Mimetics and Their Applications in H2O2 and Glucose Detection. Analytical Chemistry, 80(6), 2250-2254. doi:10.1021/ac702203f es_ES
dc.description.references Yan, Q., Peng, B., Su, G., Cohan, B. E., Major, T. C., & Meyerhoff, M. E. (2011). Measurement of Tear Glucose Levels with Amperometric Glucose Biosensor/Capillary Tube Configuration. Analytical Chemistry, 83(21), 8341-8346. doi:10.1021/ac201700c es_ES
dc.description.references Wu, X., Ge, J., Yang, C., Hou, M., & Liu, Z. (2015). Facile synthesis of multiple enzyme-containing metal–organic frameworks in a biomolecule-friendly environment. Chemical Communications, 51(69), 13408-13411. doi:10.1039/c5cc05136c es_ES
dc.description.references Song, J., He, W., Shen, H., Zhou, Z., Li, M., Su, P., & Yang, Y. (2019). Construction of multiple enzyme metal–organic frameworks biocatalyst via DNA scaffold: A promising strategy for enzyme encapsulation. Chemical Engineering Journal, 363, 174-182. doi:10.1016/j.cej.2019.01.138 es_ES
dc.description.references Bai, J., Peng, C., Guo, L., & Zhou, M. (2019). Metal–Organic Framework-Integrated Enzymes as Bioreactor for Enhanced Therapy against Solid Tumor via a Cascade Catalytic Reaction. ACS Biomaterials Science & Engineering, 5(11), 6207-6215. doi:10.1021/acsbiomaterials.9b01200 es_ES
dc.description.references Cao, Y., Li, X., Xiong, J., Wang, L., Yan, L.-T., & Ge, J. (2019). Investigating the origin of high efficiency in confined multienzyme catalysis. Nanoscale, 11(45), 22108-22117. doi:10.1039/c9nr07381g es_ES
dc.description.references Chen, S., Wen, L., Svec, F., Tan, T., & Lv, Y. (2017). Magnetic metal–organic frameworks as scaffolds for spatial co-location and positional assembly of multi-enzyme systems enabling enhanced cascade biocatalysis. RSC Advances, 7(34), 21205-21213. doi:10.1039/c7ra02291c es_ES
dc.description.references You, Y., Xu, D., Pan, X., & Ma, X. (2019). Self-propelled enzymatic nanomotors for enhancing synergetic photodynamic and starvation therapy by self-accelerated cascade reactions. Applied Materials Today, 16, 508-517. doi:10.1016/j.apmt.2019.07.008 es_ES
dc.description.references Zhou, X., Guo, S., Gao, J., Zhao, J., Xue, S., & Xu, W. (2017). Glucose oxidase-initiated cascade catalysis for sensitive impedimetric aptasensor based on metal-organic frameworks functionalized with Pt nanoparticles and hemin/G-quadruplex as mimicking peroxidases. Biosensors and Bioelectronics, 98, 83-90. doi:10.1016/j.bios.2017.06.039 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem