- -

An Emotional Analysis of False Information in Social Media and News Articles

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

An Emotional Analysis of False Information in Social Media and News Articles

Mostrar el registro completo del ítem

Ghanem, BHH.; Rosso, P.; Rangel, F. (2020). An Emotional Analysis of False Information in Social Media and News Articles. ACM Transactions on Internet Technology. 20(2):1-18. https://doi.org/10.1145/3381750

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/166520

Ficheros en el ítem

Metadatos del ítem

Título: An Emotional Analysis of False Information in Social Media and News Articles
Autor: Ghanem, Bilal Hisham Hasan Rosso, Paolo Rangel, Francisco
Entidad UPV: Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació
Fecha difusión:
Resumen:
[EN] Fake news is risky since it has been created to manipulate the readers' opinions and beliefs. In this work, we compared the language of false news to the real one of real news from an emotional perspective, considering ...[+]
Palabras clave: Fake news , Suspicious news , False information , Emotional analysis
Derechos de uso: Reserva de todos los derechos
Fuente:
ACM Transactions on Internet Technology. (issn: 1533-5399 )
DOI: 10.1145/3381750
Editorial:
Association for Computing Machinery
Versión del editor: https://doi.org/10.1145/3381750
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-096212-B-C31/ES/DESINFORMACION Y AGRESIVIDAD EN SOCIAL MEDIA: AGREGANDO INFORMACION Y ANALIZANDO EL LENGUAJE/
Agradecimientos:
The work of the second author was partially funded by the Spanish MICINN under the research project MISMISFAKEnHATE on Misinformation and Miscommunication in social media: FAKEnews and HATE speech (PGC2018-096212B-C31).
Tipo: Artículo

References

Magda B. Arnold. 1960. Emotion and Personality. Columbia University Press. Magda B. Arnold. 1960. Emotion and Personality. Columbia University Press.

Bhatt, G., Sharma, A., Sharma, S., Nagpal, A., Raman, B., & Mittal, A. (2018). Combining Neural, Statistical and External Features for Fake News Stance Identification. Companion of the The Web Conference 2018 on The Web Conference 2018 - WWW ’18. doi:10.1145/3184558.3191577

Castillo, C., Mendoza, M., & Poblete, B. (2011). Information credibility on twitter. Proceedings of the 20th international conference on World wide web - WWW ’11. doi:10.1145/1963405.1963500 [+]
Magda B. Arnold. 1960. Emotion and Personality. Columbia University Press. Magda B. Arnold. 1960. Emotion and Personality. Columbia University Press.

Bhatt, G., Sharma, A., Sharma, S., Nagpal, A., Raman, B., & Mittal, A. (2018). Combining Neural, Statistical and External Features for Fake News Stance Identification. Companion of the The Web Conference 2018 on The Web Conference 2018 - WWW ’18. doi:10.1145/3184558.3191577

Castillo, C., Mendoza, M., & Poblete, B. (2011). Information credibility on twitter. Proceedings of the 20th international conference on World wide web - WWW ’11. doi:10.1145/1963405.1963500

Chakraborty, A., Paranjape, B., Kakarla, S., & Ganguly, N. (2016). Stop Clickbait: Detecting and preventing clickbaits in online news media. 2016 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM). doi:10.1109/asonam.2016.7752207

Ekman, P. (1992). An argument for basic emotions. Cognition and Emotion, 6(3-4), 169-200. doi:10.1080/02699939208411068

Ghanem, B., Rosso, P., & Rangel, F. (2018). Stance Detection in Fake News A Combined Feature Representation. Proceedings of the First Workshop on Fact Extraction and VERification (FEVER). doi:10.18653/v1/w18-5510

Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computation, 9(8), 1735-1780. doi:10.1162/neco.1997.9.8.1735

Karadzhov, G., Nakov, P., Màrquez, L., Barrón-Cedeño, A., … Koychev, I. (2017). Fully Automated Fact Checking Using External Sources. RANLP 2017 - Recent Advances in Natural Language Processing Meet Deep Learning. doi:10.26615/978-954-452-049-6_046

Kumar, S., West, R., & Leskovec, J. (2016). Disinformation on the Web. Proceedings of the 25th International Conference on World Wide Web. doi:10.1145/2872427.2883085

Li, X., Meng, W., & Yu, C. (2011). T-verifier: Verifying truthfulness of fact statements. 2011 IEEE 27th International Conference on Data Engineering. doi:10.1109/icde.2011.5767859

Nyhan, B., & Reifler, J. (2010). When Corrections Fail: The Persistence of Political Misperceptions. Political Behavior, 32(2), 303-330. doi:10.1007/s11109-010-9112-2

Plutchik, R. (2001). The Nature of Emotions. American Scientist, 89(4), 344. doi:10.1511/2001.4.344

Popat, K., Mukherjee, S., Strötgen, J., & Weikum, G. (2016). Credibility Assessment of Textual Claims on the Web. Proceedings of the 25th ACM International on Conference on Information and Knowledge Management. doi:10.1145/2983323.2983661

Poria, S., Gelbukh, A., Hussain, A., Howard, N., Das, D., & Bandyopadhyay, S. (2013). Enhanced SenticNet with Affective Labels for Concept-Based Opinion Mining. IEEE Intelligent Systems, 28(2), 31-38. doi:10.1109/mis.2013.4

Rangel, F., & Rosso, P. (2016). On the impact of emotions on author profiling. Information Processing & Management, 52(1), 73-92. doi:10.1016/j.ipm.2015.06.003

Rashkin, H., Choi, E., Jang, J. Y., Volkova, S., & Choi, Y. (2017). Truth of Varying Shades: Analyzing Language in Fake News and Political Fact-Checking. Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. doi:10.18653/v1/d17-1317

Ruchansky, N., Seo, S., & Liu, Y. (2017). CSI. Proceedings of the 2017 ACM on Conference on Information and Knowledge Management. doi:10.1145/3132847.3132877

Tausczik, Y. R., & Pennebaker, J. W. (2009). The Psychological Meaning of Words: LIWC and Computerized Text Analysis Methods. Journal of Language and Social Psychology, 29(1), 24-54. doi:10.1177/0261927x09351676

Volkova, S., Shaffer, K., Jang, J. Y., & Hodas, N. (2017). Separating Facts from Fiction: Linguistic Models to Classify Suspicious and Trusted News Posts on Twitter. Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers). doi:10.18653/v1/p17-2102

Zhao, Z., Resnick, P., & Mei, Q. (2015). Enquiring Minds. Proceedings of the 24th International Conference on World Wide Web. doi:10.1145/2736277.2741637

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem