Mostrar el registro sencillo del ítem
dc.contributor.author | Ghanem, Bilal Hisham Hasan | es_ES |
dc.contributor.author | Rosso, Paolo | es_ES |
dc.contributor.author | Rangel, Francisco | es_ES |
dc.date.accessioned | 2021-05-20T03:32:59Z | |
dc.date.available | 2021-05-20T03:32:59Z | |
dc.date.issued | 2020-05 | es_ES |
dc.identifier.issn | 1533-5399 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/166520 | |
dc.description.abstract | [EN] Fake news is risky since it has been created to manipulate the readers' opinions and beliefs. In this work, we compared the language of false news to the real one of real news from an emotional perspective, considering a set of false information types (propaganda, hoax, clickbait, and satire) from social media and online news articles sources. Our experiments showed that false information has different emotional patterns in each of its types, and emotions play a key role in deceiving the reader. Based on that, we proposed a LSTM neural network model that is emotionally-infused to detect false news. | es_ES |
dc.description.sponsorship | The work of the second author was partially funded by the Spanish MICINN under the research project MISMISFAKEnHATE on Misinformation and Miscommunication in social media: FAKEnews and HATE speech (PGC2018-096212B-C31). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Association for Computing Machinery | es_ES |
dc.relation.ispartof | ACM Transactions on Internet Technology | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Fake news | es_ES |
dc.subject | Suspicious news | es_ES |
dc.subject | False information | es_ES |
dc.subject | Emotional analysis | es_ES |
dc.subject.classification | LENGUAJES Y SISTEMAS INFORMATICOS | es_ES |
dc.title | An Emotional Analysis of False Information in Social Media and News Articles | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1145/3381750 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-096212-B-C31/ES/DESINFORMACION Y AGRESIVIDAD EN SOCIAL MEDIA: AGREGANDO INFORMACION Y ANALIZANDO EL LENGUAJE/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació | es_ES |
dc.description.bibliographicCitation | Ghanem, BHH.; Rosso, P.; Rangel, F. (2020). An Emotional Analysis of False Information in Social Media and News Articles. ACM Transactions on Internet Technology. 20(2):1-18. https://doi.org/10.1145/3381750 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1145/3381750 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 18 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 20 | es_ES |
dc.description.issue | 2 | es_ES |
dc.relation.pasarela | S\408203 | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.description.references | Magda B. Arnold. 1960. Emotion and Personality. Columbia University Press. Magda B. Arnold. 1960. Emotion and Personality. Columbia University Press. | es_ES |
dc.description.references | Bhatt, G., Sharma, A., Sharma, S., Nagpal, A., Raman, B., & Mittal, A. (2018). Combining Neural, Statistical and External Features for Fake News Stance Identification. Companion of the The Web Conference 2018 on The Web Conference 2018 - WWW ’18. doi:10.1145/3184558.3191577 | es_ES |
dc.description.references | Castillo, C., Mendoza, M., & Poblete, B. (2011). Information credibility on twitter. Proceedings of the 20th international conference on World wide web - WWW ’11. doi:10.1145/1963405.1963500 | es_ES |
dc.description.references | Chakraborty, A., Paranjape, B., Kakarla, S., & Ganguly, N. (2016). Stop Clickbait: Detecting and preventing clickbaits in online news media. 2016 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM). doi:10.1109/asonam.2016.7752207 | es_ES |
dc.description.references | Ekman, P. (1992). An argument for basic emotions. Cognition and Emotion, 6(3-4), 169-200. doi:10.1080/02699939208411068 | es_ES |
dc.description.references | Ghanem, B., Rosso, P., & Rangel, F. (2018). Stance Detection in Fake News A Combined Feature Representation. Proceedings of the First Workshop on Fact Extraction and VERification (FEVER). doi:10.18653/v1/w18-5510 | es_ES |
dc.description.references | Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computation, 9(8), 1735-1780. doi:10.1162/neco.1997.9.8.1735 | es_ES |
dc.description.references | Karadzhov, G., Nakov, P., Màrquez, L., Barrón-Cedeño, A., … Koychev, I. (2017). Fully Automated Fact Checking Using External Sources. RANLP 2017 - Recent Advances in Natural Language Processing Meet Deep Learning. doi:10.26615/978-954-452-049-6_046 | es_ES |
dc.description.references | Kumar, S., West, R., & Leskovec, J. (2016). Disinformation on the Web. Proceedings of the 25th International Conference on World Wide Web. doi:10.1145/2872427.2883085 | es_ES |
dc.description.references | Li, X., Meng, W., & Yu, C. (2011). T-verifier: Verifying truthfulness of fact statements. 2011 IEEE 27th International Conference on Data Engineering. doi:10.1109/icde.2011.5767859 | es_ES |
dc.description.references | Nyhan, B., & Reifler, J. (2010). When Corrections Fail: The Persistence of Political Misperceptions. Political Behavior, 32(2), 303-330. doi:10.1007/s11109-010-9112-2 | es_ES |
dc.description.references | Plutchik, R. (2001). The Nature of Emotions. American Scientist, 89(4), 344. doi:10.1511/2001.4.344 | es_ES |
dc.description.references | Popat, K., Mukherjee, S., Strötgen, J., & Weikum, G. (2016). Credibility Assessment of Textual Claims on the Web. Proceedings of the 25th ACM International on Conference on Information and Knowledge Management. doi:10.1145/2983323.2983661 | es_ES |
dc.description.references | Poria, S., Gelbukh, A., Hussain, A., Howard, N., Das, D., & Bandyopadhyay, S. (2013). Enhanced SenticNet with Affective Labels for Concept-Based Opinion Mining. IEEE Intelligent Systems, 28(2), 31-38. doi:10.1109/mis.2013.4 | es_ES |
dc.description.references | Rangel, F., & Rosso, P. (2016). On the impact of emotions on author profiling. Information Processing & Management, 52(1), 73-92. doi:10.1016/j.ipm.2015.06.003 | es_ES |
dc.description.references | Rashkin, H., Choi, E., Jang, J. Y., Volkova, S., & Choi, Y. (2017). Truth of Varying Shades: Analyzing Language in Fake News and Political Fact-Checking. Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. doi:10.18653/v1/d17-1317 | es_ES |
dc.description.references | Ruchansky, N., Seo, S., & Liu, Y. (2017). CSI. Proceedings of the 2017 ACM on Conference on Information and Knowledge Management. doi:10.1145/3132847.3132877 | es_ES |
dc.description.references | Tausczik, Y. R., & Pennebaker, J. W. (2009). The Psychological Meaning of Words: LIWC and Computerized Text Analysis Methods. Journal of Language and Social Psychology, 29(1), 24-54. doi:10.1177/0261927x09351676 | es_ES |
dc.description.references | Volkova, S., Shaffer, K., Jang, J. Y., & Hodas, N. (2017). Separating Facts from Fiction: Linguistic Models to Classify Suspicious and Trusted News Posts on Twitter. Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers). doi:10.18653/v1/p17-2102 | es_ES |
dc.description.references | Zhao, Z., Resnick, P., & Mei, Q. (2015). Enquiring Minds. Proceedings of the 24th International Conference on World Wide Web. doi:10.1145/2736277.2741637 | es_ES |