- -

Regioselective Generation of Single-Site Iridium Atoms and Their Evolution into Stabilized Subnanometric Iridium Clusters in MWW Zeolite

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Regioselective Generation of Single-Site Iridium Atoms and Their Evolution into Stabilized Subnanometric Iridium Clusters in MWW Zeolite

Show full item record

Liu, L.; Lopez-Haro, M.; Meira, DM.; Concepción Heydorn, P.; Calvino, JJ.; Corma Canós, A. (2020). Regioselective Generation of Single-Site Iridium Atoms and Their Evolution into Stabilized Subnanometric Iridium Clusters in MWW Zeolite. Angewandte Chemie International Edition. 59(36):15695-15702. https://doi.org/10.1002/anie.202005621

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/166530

Files in this item

Item Metadata

Title: Regioselective Generation of Single-Site Iridium Atoms and Their Evolution into Stabilized Subnanometric Iridium Clusters in MWW Zeolite
Author: Liu, Lichen Lopez-Haro, Miguel Meira, Debora M. Concepción Heydorn, Patricia Calvino, Jose J. Corma Canós, Avelino
UPV Unit: Universitat Politècnica de València. Departamento de Química - Departament de Química
Issued date:
Embargo end date: 2021-06-25
Abstract:
[EN] Preparation of supported metal catalysts with uniform particle size and coordination environment is a challenging and important topic in materials chemistry and catalysis. In this work, we report the regioselective ...[+]
Subjects: Alkane hydrogenolysis , Clusters , Iridium , Single atoms , Zeolite
Copyrigths: Reserva de todos los derechos
Source:
Angewandte Chemie International Edition. (issn: 1433-7851 )
DOI: 10.1002/anie.202005621
Publisher:
John Wiley & Sons
Publisher version: https://doi.org/10.1002/anie.202005621
Project ID:
info:eu-repo/grantAgreement/EC/H2020/671093/EU/MATching zeolite SYNthesis with CATalytic activity/
info:eu-repo/grantAgreement/DOE//DE-AC02-06CH11357/
info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MAT2017-87579-R/ES/FASES 2D ULTRAFINAS SOBRE OXIDOS CON MORFOLOGIA CONTROLADA: PLATAFORMA DE NANOCATALIZADORES MULTICOMPONENTE CON APLICACIONES EN PROTECCION DEL MEDIO AMBIENTE/
info:eu-repo/grantAgreement/MINECO//MAT2016-81118-P/ES/DISEÑO Y CARACTERIZACION AVANZADA DE CATALIZADORES CON NANOINTERFASES MODELO AU%2F%2FCEO2/
Description: This is the peer reviewed version of the following article: L. Liu, M. Lopez-Haro, D. M. Meira, P. Concepcion, J. J. Calvino, A. Corma, Angew. Chem. Int. Ed. 2020, 59, 15695, which has been published in final form at https://doi.org/10.1002/anie.202005621. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.
Thanks:
This work has been supported by the European Union through the European Research Council (grant ERC-AdG-2014-671093, SynCatMatch) and the Spanish government through the "Severo Ochoa Program" (SEV-2016-0683). The authors ...[+]
Type: Artículo

References

Liu, L., & Corma, A. (2018). Metal Catalysts for Heterogeneous Catalysis: From Single Atoms to Nanoclusters and Nanoparticles. Chemical Reviews, 118(10), 4981-5079. doi:10.1021/acs.chemrev.7b00776

Thomas, J. M., Raja, R., & Lewis, D. W. (2005). Single-Site Heterogeneous Catalysts. Angewandte Chemie International Edition, 44(40), 6456-6482. doi:10.1002/anie.200462473

Thomas, J. M., Raja, R., & Lewis, D. W. (2005). Heterogene Single-Site-Katalysatoren. Angewandte Chemie, 117(40), 6614-6641. doi:10.1002/ange.200462473 [+]
Liu, L., & Corma, A. (2018). Metal Catalysts for Heterogeneous Catalysis: From Single Atoms to Nanoclusters and Nanoparticles. Chemical Reviews, 118(10), 4981-5079. doi:10.1021/acs.chemrev.7b00776

Thomas, J. M., Raja, R., & Lewis, D. W. (2005). Single-Site Heterogeneous Catalysts. Angewandte Chemie International Edition, 44(40), 6456-6482. doi:10.1002/anie.200462473

Thomas, J. M., Raja, R., & Lewis, D. W. (2005). Heterogene Single-Site-Katalysatoren. Angewandte Chemie, 117(40), 6614-6641. doi:10.1002/ange.200462473

Wang, A., Li, J., & Zhang, T. (2018). Heterogeneous single-atom catalysis. Nature Reviews Chemistry, 2(6), 65-81. doi:10.1038/s41570-018-0010-1

Pelletier, J. D. A., & Basset, J.-M. (2016). Catalysis by Design: Well-Defined Single-Site Heterogeneous Catalysts. Accounts of Chemical Research, 49(4), 664-677. doi:10.1021/acs.accounts.5b00518

Pan, Y., Zhang, C., Liu, Z., Chen, C., & Li, Y. (2020). Structural Regulation with Atomic-Level Precision: From Single-Atomic Site to Diatomic and Atomic Interface Catalysis. Matter, 2(1), 78-110. doi:10.1016/j.matt.2019.11.014

Gates, B. C., Flytzani-Stephanopoulos, M., Dixon, D. A., & Katz, A. (2017). Atomically dispersed supported metal catalysts: perspectives and suggestions for future research. Catalysis Science & Technology, 7(19), 4259-4275. doi:10.1039/c7cy00881c

Hoffman, A. S., Debefve, L. M., Zhang, S., Perez-Aguilar, J. E., Conley, E. T., Justl, K. R., … Gates, B. C. (2018). Beating Heterogeneity of Single-Site Catalysts: MgO-Supported Iridium Complexes. ACS Catalysis, 8(4), 3489-3498. doi:10.1021/acscatal.8b00143

Oliver-Meseguer, J., Cabrero-Antonino, J. R., Domínguez, I., Leyva-Pérez, A., & Corma, A. (2012). Small Gold Clusters Formed in Solution Give Reaction Turnover Numbers of 10 7 at Room Temperature. Science, 338(6113), 1452-1455. doi:10.1126/science.1227813

Corma, A., Concepción, P., Boronat, M., Sabater, M. J., Navas, J., Yacaman, M. J., … Mayoral, A. (2013). Exceptional oxidation activity with size-controlled supported gold clusters of low atomicity. Nature Chemistry, 5(9), 775-781. doi:10.1038/nchem.1721

Serna, P., & Gates, B. C. (2014). Molecular Metal Catalysts on Supports: Organometallic Chemistry Meets Surface Science. Accounts of Chemical Research, 47(8), 2612-2620. doi:10.1021/ar500170k

Lu, J., Aydin, C., Browning, N. D., & Gates, B. C. (2012). Imaging Isolated Gold Atom Catalytic Sites in Zeolite NaY. Angewandte Chemie International Edition, 51(24), 5842-5846. doi:10.1002/anie.201107391

Lu, J., Aydin, C., Browning, N. D., & Gates, B. C. (2012). Imaging Isolated Gold Atom Catalytic Sites in Zeolite NaY. Angewandte Chemie, 124(24), 5944-5948. doi:10.1002/ange.201107391

Liu, L., & Corma, A. (2020). Evolution of Isolated Atoms and Clusters in Catalysis. Trends in Chemistry, 2(4), 383-400. doi:10.1016/j.trechm.2020.02.003

Pan, C., Pelzer, K., Philippot, K., Chaudret, B., Dassenoy, F., Lecante, P., & Casanove, M.-J. (2001). Ligand-Stabilized Ruthenium Nanoparticles:  Synthesis, Organization, and Dynamics. Journal of the American Chemical Society, 123(31), 7584-7593. doi:10.1021/ja003961m

Martínez-Prieto, L. M., & Chaudret, B. (2018). Organometallic Ruthenium Nanoparticles: Synthesis, Surface Chemistry, and Insights into Ligand Coordination. Accounts of Chemical Research, 51(2), 376-384. doi:10.1021/acs.accounts.7b00378

Liu, L., Díaz, U., Arenal, R., Agostini, G., Concepción, P., & Corma, A. (2016). Generation of subnanometric platinum with high stability during transformation of a 2D zeolite into 3D. Nature Materials, 16(1), 132-138. doi:10.1038/nmat4757

Sun, Q., Wang, N., Zhang, T., Bai, R., Mayoral, A., Zhang, P., … Yu, J. (2019). Zeolite‐Encaged Single‐Atom Rhodium Catalysts: Highly‐Efficient Hydrogen Generation and Shape‐Selective Tandem Hydrogenation of Nitroarenes. Angewandte Chemie International Edition, 58(51), 18570-18576. doi:10.1002/anie.201912367

Sun, Q., Wang, N., Zhang, T., Bai, R., Mayoral, A., Zhang, P., … Yu, J. (2019). Zeolite‐Encaged Single‐Atom Rhodium Catalysts: Highly‐Efficient Hydrogen Generation and Shape‐Selective Tandem Hydrogenation of Nitroarenes. Angewandte Chemie, 131(51), 18743-18749. doi:10.1002/ange.201912367

Liu, Y., Li, Z., Yu, Q., Chen, Y., Chai, Z., Zhao, G., … Li, Y. (2019). A General Strategy for Fabricating Isolated Single Metal Atomic Site Catalysts in Y Zeolite. Journal of the American Chemical Society, 141(23), 9305-9311. doi:10.1021/jacs.9b02936

Wu, S., Yang, X., & Janiak, C. (2019). Confinement Effects in Zeolite‐Confined Noble Metals. Angewandte Chemie International Edition, 58(36), 12340-12354. doi:10.1002/anie.201900013

Wu, S., Yang, X., & Janiak, C. (2019). Confinement Effects in Zeolite‐Confined Noble Metals. Angewandte Chemie, 131(36), 12468-12482. doi:10.1002/ange.201900013

Liu, L., Lopez-Haro, M., Lopes, C. W., Li, C., Concepcion, P., Simonelli, L., … Corma, A. (2019). Regioselective generation and reactivity control of subnanometric platinum clusters in zeolites for high-temperature catalysis. Nature Materials, 18(8), 866-873. doi:10.1038/s41563-019-0412-6

Camblor, M. A., Corma, A., Díaz-Cabañas, M.-J., & Baerlocher, C. (1998). Synthesis and Structural Characterization of MWW Type Zeolite ITQ-1, the Pure Silica Analog of MCM-22 and SSZ-25. The Journal of Physical Chemistry B, 102(1), 44-51. doi:10.1021/jp972319k

Yücelen, E., Lazić, I., & Bosch, E. G. T. (2018). Phase contrast scanning transmission electron microscopy imaging of light and heavy atoms at the limit of contrast and resolution. Scientific Reports, 8(1). doi:10.1038/s41598-018-20377-2

Liu, L., Wang, N., Zhu, C., Liu, X., Zhu, Y., Guo, P., … Han, Y. (2020). Direct Imaging of Atomically Dispersed Molybdenum that Enables Location of Aluminum in the Framework of Zeolite ZSM‐5. Angewandte Chemie International Edition, 59(2), 819-825. doi:10.1002/anie.201909834

Liu, L., Wang, N., Zhu, C., Liu, X., Zhu, Y., Guo, P., … Han, Y. (2019). Direct Imaging of Atomically Dispersed Molybdenum that Enables Location of Aluminum in the Framework of Zeolite ZSM‐5. Angewandte Chemie, 132(2), 829-835. doi:10.1002/ange.201909834

Schroeder, C., Mück‐Lichtenfeld, C., Xu, L., Grosso‐Giordano, N. A., Okrut, A., Chen, C., … Koller, H. (2020). A Stable Silanol Triad in the Zeolite Catalyst SSZ‐70. Angewandte Chemie International Edition, 59(27), 10939-10943. doi:10.1002/anie.202001364

Schroeder, C., Mück‐Lichtenfeld, C., Xu, L., Grosso‐Giordano, N. A., Okrut, A., Chen, C., … Koller, H. (2020). Stabile Silanoltriaden im Zeolithkatalysator SSZ‐70. Angewandte Chemie, 132(27), 11032-11036. doi:10.1002/ange.202001364

Corma, A., Fornes, V., Pergher, S. B., Maesen, T. L. M., & Buglass, J. G. (1998). Delaminated zeolite precursors as selective acidic catalysts. Nature, 396(6709), 353-356. doi:10.1038/24592

Leonowicz, M. E., Lawton, J. A., Lawton, S. L., & Rubin, M. K. (1994). MCM-22: A Molecular Sieve with Two Independent Multidimensional Channel Systems. Science, 264(5167), 1910-1913. doi:10.1126/science.264.5167.1910

Moliner, M., Gabay, J. E., Kliewer, C. E., Carr, R. T., Guzman, J., Casty, G. L., … Corma, A. (2016). Reversible Transformation of Pt Nanoparticles into Single Atoms inside High-Silica Chabazite Zeolite. Journal of the American Chemical Society, 138(48), 15743-15750. doi:10.1021/jacs.6b10169

Liu, L., Zakharov, D. N., Arenal, R., Concepcion, P., Stach, E. A., & Corma, A. (2018). Evolution and stabilization of subnanometric metal species in confined space by in situ TEM. Nature Communications, 9(1). doi:10.1038/s41467-018-03012-6

Yan, W., Xi, S., Du, Y., Schreyer, M. K., Tan, S. X., Liu, Y., & Borgna, A. (2018). Heteroatomic Zn-MWW Zeolite Developed for Catalytic Dehydrogenation Reactions: A Combined Experimental and DFT Study. ChemCatChem, 10(14), 3078-3085. doi:10.1002/cctc.201800199

De Graaf, J., van Dillen, A. ., de Jong, K. ., & Koningsberger, D. . (2001). Preparation of Highly Dispersed Pt Particles in Zeolite Y with a Narrow Particle Size Distribution: Characterization by Hydrogen Chemisorption, TEM, EXAFS Spectroscopy, and Particle Modeling. Journal of Catalysis, 203(2), 307-321. doi:10.1006/jcat.2001.3337

Jentys, A. (1999). Estimation of mean size and shape of small metal particles by EXAFS. Physical Chemistry Chemical Physics, 1(17), 4059-4063. doi:10.1039/a904654b

Lu, J., Serna, P., Aydin, C., Browning, N. D., & Gates, B. C. (2011). Supported Molecular Iridium Catalysts: Resolving Effects of Metal Nuclearity and Supports as Ligands. Journal of the American Chemical Society, 133(40), 16186-16195. doi:10.1021/ja206486j

Zhao, A., & Gates, B. C. (1996). Hexairidium Clusters Supported on γ-Al2O3:  Synthesis, Structure, and Catalytic Activity for Toluene Hydrogenation. Journal of the American Chemical Society, 118(10), 2458-2469. doi:10.1021/ja952996x

Noei, H., Franz, D., Creutzburg, M., Müller, P., Krausert, K., Grånäs, E., … Stierle, A. (2018). Monitoring the Interaction of CO with Graphene Supported Ir Clusters by Vibrational Spectroscopy and Density Functional Theory Calculations. The Journal of Physical Chemistry C, 122(8), 4281-4289. doi:10.1021/acs.jpcc.7b10845

Fielicke, A., Gruene, P., Meijer, G., & Rayner, D. M. (2009). The adsorption of CO on transition metal clusters: A case study of cluster surface chemistry. Surface Science, 603(10-12), 1427-1433. doi:10.1016/j.susc.2008.09.064

Henninen, T. R., Bon, M., Wang, F., Passerone, D., & Erni, R. (2020). The Structure of Sub‐nm Platinum Clusters at Elevated Temperatures. Angewandte Chemie International Edition, 59(2), 839-845. doi:10.1002/anie.201911068

Henninen, T. R., Bon, M., Wang, F., Passerone, D., & Erni, R. (2019). The Structure of Sub‐nm Platinum Clusters at Elevated Temperatures. Angewandte Chemie, 132(2), 849-855. doi:10.1002/ange.201911068

Okumura, M., Irie, Y., Kitagawa, Y., Fujitani, T., Maeda, Y., Kasai, T., & Yamaguchi, K. (2006). DFT studies of interaction of Ir cluster with O2, CO and NO. Catalysis Today, 111(3-4), 311-315. doi:10.1016/j.cattod.2005.10.042

Flaherty, D. W., & Iglesia, E. (2013). Transition-State Enthalpy and Entropy Effects on Reactivity and Selectivity in Hydrogenolysis of n-Alkanes. Journal of the American Chemical Society, 135(49), 18586-18599. doi:10.1021/ja4093743

Talu, O., Sun, M. S., & Shah, D. B. (1998). Diffusivities ofn-alkanes in silicalite by steady-state single-crystal membrane technique. AIChE Journal, 44(3), 681-694. doi:10.1002/aic.690440316

Flaherty, D. W., Uzun, A., & Iglesia, E. (2015). Catalytic Ring Opening of Cycloalkanes on Ir Clusters: Alkyl Substitution Effects on the Structure and Stability of C–C Bond Cleavage Transition States. The Journal of Physical Chemistry C, 119(5), 2597-2613. doi:10.1021/jp511688x

Hibbitts, D. D., Flaherty, D. W., & Iglesia, E. (2015). Role of Branching on the Rate and Mechanism of C–C Cleavage in Alkanes on Metal Surfaces. ACS Catalysis, 6(1), 469-482. doi:10.1021/acscatal.5b01950

Majesté, A., Balcon, S., Guérin, M., Kappenstein, C., & Paál, Z. (1999). Hydrogenolysis of n-Hexane on Al2O3-Supported Ir Catalysts of Various Treatments. Journal of Catalysis, 187(2), 486-492. doi:10.1006/jcat.1999.2621

Corma, A., Catlow, C. R. A., & Sastre, G. (1998). Diffusion of Linear and Branched C7 Paraffins in ITQ-1 Zeolite. A Molecular Dynamics Study. The Journal of Physical Chemistry B, 102(37), 7085-7090. doi:10.1021/jp9813084

Sastre, G., Catlow, C. R. A., & Corma, A. (2002). Influence of the Intermolecular Interactions on the Mobility of Heptane in the Supercages of MCM-22 Zeolite. A Molecular Dynamics Study. The Journal of Physical Chemistry B, 106(5), 956-962. doi:10.1021/jp013589c

Shi, H., Gutiérrez, O. Y., Haller, G. L., Mei, D., Rousseau, R., & Lercher, J. A. (2013). Structure sensitivity of hydrogenolytic cleavage of endocyclic and exocyclic C–C bonds in methylcyclohexane over supported iridium particles. Journal of Catalysis, 297, 70-78. doi:10.1016/j.jcat.2012.09.018

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record