Mostrar el registro sencillo del ítem
dc.contributor.author | Liu, Lichen | es_ES |
dc.contributor.author | Lopez-Haro, Miguel | es_ES |
dc.contributor.author | Meira, Debora M. | es_ES |
dc.contributor.author | Concepción Heydorn, Patricia | es_ES |
dc.contributor.author | Calvino, Jose J. | es_ES |
dc.contributor.author | Corma Canós, Avelino | es_ES |
dc.date.accessioned | 2021-05-20T03:33:47Z | |
dc.date.available | 2021-05-20T03:33:47Z | |
dc.date.issued | 2020-09-01 | es_ES |
dc.identifier.issn | 1433-7851 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/166530 | |
dc.description | This is the peer reviewed version of the following article: L. Liu, M. Lopez-Haro, D. M. Meira, P. Concepcion, J. J. Calvino, A. Corma, Angew. Chem. Int. Ed. 2020, 59, 15695, which has been published in final form at https://doi.org/10.1002/anie.202005621. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. | es_ES |
dc.description.abstract | [EN] Preparation of supported metal catalysts with uniform particle size and coordination environment is a challenging and important topic in materials chemistry and catalysis. In this work, we report the regioselective generation of single-site Ir atoms and their evolution into stabilized subnanometric Ir clusters in MWW zeolite, which are located at the 10MR window connecting the two neighboring 12MR supercages. The size of the subnanometric Ir clusters can be controlled by the post-synthesis treatments and maintain below 1 nm even after being reduced at 650 degrees C, which cannot be readily achieved with samples prepared by conventional impregnation methods. The high structure sensitivity, size-dependence, of catalytic performance in the alkane hydrogenolysis reaction of Ir clusters in the subnanometric regime is evidenced. | es_ES |
dc.description.sponsorship | This work has been supported by the European Union through the European Research Council (grant ERC-AdG-2014-671093, SynCatMatch) and the Spanish government through the "Severo Ochoa Program" (SEV-2016-0683). The authors also thank Microscopy Service of UPV for the TEM and STEM measurements. High-resolution STEM measurements were performed at the DME-UCA node of the ELECMI National Singular Infrastruture, in Cadiz University, with financial support from FEDER/MINECO (MAT2017-87579-R and MAT2016-81118-P). This research used resources of the Advanced Photon Source, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science by Argonne National Laboratory, and was supported by the U.S. DOE under Contract No.DE-AC02-06CH11357, and the Canadian Light Source and its funding partners. The financial support from ExxonMobil on this project is also greatly acknowledged. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | John Wiley & Sons | es_ES |
dc.relation.ispartof | Angewandte Chemie International Edition | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Alkane hydrogenolysis | es_ES |
dc.subject | Clusters | es_ES |
dc.subject | Iridium | es_ES |
dc.subject | Single atoms | es_ES |
dc.subject | Zeolite | es_ES |
dc.subject.classification | QUIMICA ORGANICA | es_ES |
dc.title | Regioselective Generation of Single-Site Iridium Atoms and Their Evolution into Stabilized Subnanometric Iridium Clusters in MWW Zeolite | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1002/anie.202005621 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/671093/EU/MATching zeolite SYNthesis with CATalytic activity/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/DOE//DE-AC02-06CH11357/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MAT2017-87579-R/ES/FASES 2D ULTRAFINAS SOBRE OXIDOS CON MORFOLOGIA CONTROLADA: PLATAFORMA DE NANOCATALIZADORES MULTICOMPONENTE CON APLICACIONES EN PROTECCION DEL MEDIO AMBIENTE/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MAT2016-81118-P/ES/DISEÑO Y CARACTERIZACION AVANZADA DE CATALIZADORES CON NANOINTERFASES MODELO AU%2F%2FCEO2/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.date.embargoEndDate | 2021-06-25 | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.description.bibliographicCitation | Liu, L.; Lopez-Haro, M.; Meira, DM.; Concepción Heydorn, P.; Calvino, JJ.; Corma Canós, A. (2020). Regioselective Generation of Single-Site Iridium Atoms and Their Evolution into Stabilized Subnanometric Iridium Clusters in MWW Zeolite. Angewandte Chemie International Edition. 59(36):15695-15702. https://doi.org/10.1002/anie.202005621 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1002/anie.202005621 | es_ES |
dc.description.upvformatpinicio | 15695 | es_ES |
dc.description.upvformatpfin | 15702 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 59 | es_ES |
dc.description.issue | 36 | es_ES |
dc.identifier.pmid | 32583951 | es_ES |
dc.relation.pasarela | S\433668 | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.contributor.funder | Canadian Light Source | es_ES |
dc.contributor.funder | U.S. Department of Energy | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | ExxonMobil Research and Engineering Company | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.description.references | Liu, L., & Corma, A. (2018). Metal Catalysts for Heterogeneous Catalysis: From Single Atoms to Nanoclusters and Nanoparticles. Chemical Reviews, 118(10), 4981-5079. doi:10.1021/acs.chemrev.7b00776 | es_ES |
dc.description.references | Thomas, J. M., Raja, R., & Lewis, D. W. (2005). Single-Site Heterogeneous Catalysts. Angewandte Chemie International Edition, 44(40), 6456-6482. doi:10.1002/anie.200462473 | es_ES |
dc.description.references | Thomas, J. M., Raja, R., & Lewis, D. W. (2005). Heterogene Single-Site-Katalysatoren. Angewandte Chemie, 117(40), 6614-6641. doi:10.1002/ange.200462473 | es_ES |
dc.description.references | Wang, A., Li, J., & Zhang, T. (2018). Heterogeneous single-atom catalysis. Nature Reviews Chemistry, 2(6), 65-81. doi:10.1038/s41570-018-0010-1 | es_ES |
dc.description.references | Pelletier, J. D. A., & Basset, J.-M. (2016). Catalysis by Design: Well-Defined Single-Site Heterogeneous Catalysts. Accounts of Chemical Research, 49(4), 664-677. doi:10.1021/acs.accounts.5b00518 | es_ES |
dc.description.references | Pan, Y., Zhang, C., Liu, Z., Chen, C., & Li, Y. (2020). Structural Regulation with Atomic-Level Precision: From Single-Atomic Site to Diatomic and Atomic Interface Catalysis. Matter, 2(1), 78-110. doi:10.1016/j.matt.2019.11.014 | es_ES |
dc.description.references | Gates, B. C., Flytzani-Stephanopoulos, M., Dixon, D. A., & Katz, A. (2017). Atomically dispersed supported metal catalysts: perspectives and suggestions for future research. Catalysis Science & Technology, 7(19), 4259-4275. doi:10.1039/c7cy00881c | es_ES |
dc.description.references | Hoffman, A. S., Debefve, L. M., Zhang, S., Perez-Aguilar, J. E., Conley, E. T., Justl, K. R., … Gates, B. C. (2018). Beating Heterogeneity of Single-Site Catalysts: MgO-Supported Iridium Complexes. ACS Catalysis, 8(4), 3489-3498. doi:10.1021/acscatal.8b00143 | es_ES |
dc.description.references | Oliver-Meseguer, J., Cabrero-Antonino, J. R., Domínguez, I., Leyva-Pérez, A., & Corma, A. (2012). Small Gold Clusters Formed in Solution Give Reaction Turnover Numbers of 10 7 at Room Temperature. Science, 338(6113), 1452-1455. doi:10.1126/science.1227813 | es_ES |
dc.description.references | Corma, A., Concepción, P., Boronat, M., Sabater, M. J., Navas, J., Yacaman, M. J., … Mayoral, A. (2013). Exceptional oxidation activity with size-controlled supported gold clusters of low atomicity. Nature Chemistry, 5(9), 775-781. doi:10.1038/nchem.1721 | es_ES |
dc.description.references | Serna, P., & Gates, B. C. (2014). Molecular Metal Catalysts on Supports: Organometallic Chemistry Meets Surface Science. Accounts of Chemical Research, 47(8), 2612-2620. doi:10.1021/ar500170k | es_ES |
dc.description.references | Lu, J., Aydin, C., Browning, N. D., & Gates, B. C. (2012). Imaging Isolated Gold Atom Catalytic Sites in Zeolite NaY. Angewandte Chemie International Edition, 51(24), 5842-5846. doi:10.1002/anie.201107391 | es_ES |
dc.description.references | Lu, J., Aydin, C., Browning, N. D., & Gates, B. C. (2012). Imaging Isolated Gold Atom Catalytic Sites in Zeolite NaY. Angewandte Chemie, 124(24), 5944-5948. doi:10.1002/ange.201107391 | es_ES |
dc.description.references | Liu, L., & Corma, A. (2020). Evolution of Isolated Atoms and Clusters in Catalysis. Trends in Chemistry, 2(4), 383-400. doi:10.1016/j.trechm.2020.02.003 | es_ES |
dc.description.references | Pan, C., Pelzer, K., Philippot, K., Chaudret, B., Dassenoy, F., Lecante, P., & Casanove, M.-J. (2001). Ligand-Stabilized Ruthenium Nanoparticles: Synthesis, Organization, and Dynamics. Journal of the American Chemical Society, 123(31), 7584-7593. doi:10.1021/ja003961m | es_ES |
dc.description.references | Martínez-Prieto, L. M., & Chaudret, B. (2018). Organometallic Ruthenium Nanoparticles: Synthesis, Surface Chemistry, and Insights into Ligand Coordination. Accounts of Chemical Research, 51(2), 376-384. doi:10.1021/acs.accounts.7b00378 | es_ES |
dc.description.references | Liu, L., Díaz, U., Arenal, R., Agostini, G., Concepción, P., & Corma, A. (2016). Generation of subnanometric platinum with high stability during transformation of a 2D zeolite into 3D. Nature Materials, 16(1), 132-138. doi:10.1038/nmat4757 | es_ES |
dc.description.references | Sun, Q., Wang, N., Zhang, T., Bai, R., Mayoral, A., Zhang, P., … Yu, J. (2019). Zeolite‐Encaged Single‐Atom Rhodium Catalysts: Highly‐Efficient Hydrogen Generation and Shape‐Selective Tandem Hydrogenation of Nitroarenes. Angewandte Chemie International Edition, 58(51), 18570-18576. doi:10.1002/anie.201912367 | es_ES |
dc.description.references | Sun, Q., Wang, N., Zhang, T., Bai, R., Mayoral, A., Zhang, P., … Yu, J. (2019). Zeolite‐Encaged Single‐Atom Rhodium Catalysts: Highly‐Efficient Hydrogen Generation and Shape‐Selective Tandem Hydrogenation of Nitroarenes. Angewandte Chemie, 131(51), 18743-18749. doi:10.1002/ange.201912367 | es_ES |
dc.description.references | Liu, Y., Li, Z., Yu, Q., Chen, Y., Chai, Z., Zhao, G., … Li, Y. (2019). A General Strategy for Fabricating Isolated Single Metal Atomic Site Catalysts in Y Zeolite. Journal of the American Chemical Society, 141(23), 9305-9311. doi:10.1021/jacs.9b02936 | es_ES |
dc.description.references | Wu, S., Yang, X., & Janiak, C. (2019). Confinement Effects in Zeolite‐Confined Noble Metals. Angewandte Chemie International Edition, 58(36), 12340-12354. doi:10.1002/anie.201900013 | es_ES |
dc.description.references | Wu, S., Yang, X., & Janiak, C. (2019). Confinement Effects in Zeolite‐Confined Noble Metals. Angewandte Chemie, 131(36), 12468-12482. doi:10.1002/ange.201900013 | es_ES |
dc.description.references | Liu, L., Lopez-Haro, M., Lopes, C. W., Li, C., Concepcion, P., Simonelli, L., … Corma, A. (2019). Regioselective generation and reactivity control of subnanometric platinum clusters in zeolites for high-temperature catalysis. Nature Materials, 18(8), 866-873. doi:10.1038/s41563-019-0412-6 | es_ES |
dc.description.references | Camblor, M. A., Corma, A., Díaz-Cabañas, M.-J., & Baerlocher, C. (1998). Synthesis and Structural Characterization of MWW Type Zeolite ITQ-1, the Pure Silica Analog of MCM-22 and SSZ-25. The Journal of Physical Chemistry B, 102(1), 44-51. doi:10.1021/jp972319k | es_ES |
dc.description.references | Yücelen, E., Lazić, I., & Bosch, E. G. T. (2018). Phase contrast scanning transmission electron microscopy imaging of light and heavy atoms at the limit of contrast and resolution. Scientific Reports, 8(1). doi:10.1038/s41598-018-20377-2 | es_ES |
dc.description.references | Liu, L., Wang, N., Zhu, C., Liu, X., Zhu, Y., Guo, P., … Han, Y. (2020). Direct Imaging of Atomically Dispersed Molybdenum that Enables Location of Aluminum in the Framework of Zeolite ZSM‐5. Angewandte Chemie International Edition, 59(2), 819-825. doi:10.1002/anie.201909834 | es_ES |
dc.description.references | Liu, L., Wang, N., Zhu, C., Liu, X., Zhu, Y., Guo, P., … Han, Y. (2019). Direct Imaging of Atomically Dispersed Molybdenum that Enables Location of Aluminum in the Framework of Zeolite ZSM‐5. Angewandte Chemie, 132(2), 829-835. doi:10.1002/ange.201909834 | es_ES |
dc.description.references | Schroeder, C., Mück‐Lichtenfeld, C., Xu, L., Grosso‐Giordano, N. A., Okrut, A., Chen, C., … Koller, H. (2020). A Stable Silanol Triad in the Zeolite Catalyst SSZ‐70. Angewandte Chemie International Edition, 59(27), 10939-10943. doi:10.1002/anie.202001364 | es_ES |
dc.description.references | Schroeder, C., Mück‐Lichtenfeld, C., Xu, L., Grosso‐Giordano, N. A., Okrut, A., Chen, C., … Koller, H. (2020). Stabile Silanoltriaden im Zeolithkatalysator SSZ‐70. Angewandte Chemie, 132(27), 11032-11036. doi:10.1002/ange.202001364 | es_ES |
dc.description.references | Corma, A., Fornes, V., Pergher, S. B., Maesen, T. L. M., & Buglass, J. G. (1998). Delaminated zeolite precursors as selective acidic catalysts. Nature, 396(6709), 353-356. doi:10.1038/24592 | es_ES |
dc.description.references | Leonowicz, M. E., Lawton, J. A., Lawton, S. L., & Rubin, M. K. (1994). MCM-22: A Molecular Sieve with Two Independent Multidimensional Channel Systems. Science, 264(5167), 1910-1913. doi:10.1126/science.264.5167.1910 | es_ES |
dc.description.references | Moliner, M., Gabay, J. E., Kliewer, C. E., Carr, R. T., Guzman, J., Casty, G. L., … Corma, A. (2016). Reversible Transformation of Pt Nanoparticles into Single Atoms inside High-Silica Chabazite Zeolite. Journal of the American Chemical Society, 138(48), 15743-15750. doi:10.1021/jacs.6b10169 | es_ES |
dc.description.references | Liu, L., Zakharov, D. N., Arenal, R., Concepcion, P., Stach, E. A., & Corma, A. (2018). Evolution and stabilization of subnanometric metal species in confined space by in situ TEM. Nature Communications, 9(1). doi:10.1038/s41467-018-03012-6 | es_ES |
dc.description.references | Yan, W., Xi, S., Du, Y., Schreyer, M. K., Tan, S. X., Liu, Y., & Borgna, A. (2018). Heteroatomic Zn-MWW Zeolite Developed for Catalytic Dehydrogenation Reactions: A Combined Experimental and DFT Study. ChemCatChem, 10(14), 3078-3085. doi:10.1002/cctc.201800199 | es_ES |
dc.description.references | De Graaf, J., van Dillen, A. ., de Jong, K. ., & Koningsberger, D. . (2001). Preparation of Highly Dispersed Pt Particles in Zeolite Y with a Narrow Particle Size Distribution: Characterization by Hydrogen Chemisorption, TEM, EXAFS Spectroscopy, and Particle Modeling. Journal of Catalysis, 203(2), 307-321. doi:10.1006/jcat.2001.3337 | es_ES |
dc.description.references | Jentys, A. (1999). Estimation of mean size and shape of small metal particles by EXAFS. Physical Chemistry Chemical Physics, 1(17), 4059-4063. doi:10.1039/a904654b | es_ES |
dc.description.references | Lu, J., Serna, P., Aydin, C., Browning, N. D., & Gates, B. C. (2011). Supported Molecular Iridium Catalysts: Resolving Effects of Metal Nuclearity and Supports as Ligands. Journal of the American Chemical Society, 133(40), 16186-16195. doi:10.1021/ja206486j | es_ES |
dc.description.references | Zhao, A., & Gates, B. C. (1996). Hexairidium Clusters Supported on γ-Al2O3: Synthesis, Structure, and Catalytic Activity for Toluene Hydrogenation. Journal of the American Chemical Society, 118(10), 2458-2469. doi:10.1021/ja952996x | es_ES |
dc.description.references | Noei, H., Franz, D., Creutzburg, M., Müller, P., Krausert, K., Grånäs, E., … Stierle, A. (2018). Monitoring the Interaction of CO with Graphene Supported Ir Clusters by Vibrational Spectroscopy and Density Functional Theory Calculations. The Journal of Physical Chemistry C, 122(8), 4281-4289. doi:10.1021/acs.jpcc.7b10845 | es_ES |
dc.description.references | Fielicke, A., Gruene, P., Meijer, G., & Rayner, D. M. (2009). The adsorption of CO on transition metal clusters: A case study of cluster surface chemistry. Surface Science, 603(10-12), 1427-1433. doi:10.1016/j.susc.2008.09.064 | es_ES |
dc.description.references | Henninen, T. R., Bon, M., Wang, F., Passerone, D., & Erni, R. (2020). The Structure of Sub‐nm Platinum Clusters at Elevated Temperatures. Angewandte Chemie International Edition, 59(2), 839-845. doi:10.1002/anie.201911068 | es_ES |
dc.description.references | Henninen, T. R., Bon, M., Wang, F., Passerone, D., & Erni, R. (2019). The Structure of Sub‐nm Platinum Clusters at Elevated Temperatures. Angewandte Chemie, 132(2), 849-855. doi:10.1002/ange.201911068 | es_ES |
dc.description.references | Okumura, M., Irie, Y., Kitagawa, Y., Fujitani, T., Maeda, Y., Kasai, T., & Yamaguchi, K. (2006). DFT studies of interaction of Ir cluster with O2, CO and NO. Catalysis Today, 111(3-4), 311-315. doi:10.1016/j.cattod.2005.10.042 | es_ES |
dc.description.references | Flaherty, D. W., & Iglesia, E. (2013). Transition-State Enthalpy and Entropy Effects on Reactivity and Selectivity in Hydrogenolysis of n-Alkanes. Journal of the American Chemical Society, 135(49), 18586-18599. doi:10.1021/ja4093743 | es_ES |
dc.description.references | Talu, O., Sun, M. S., & Shah, D. B. (1998). Diffusivities ofn-alkanes in silicalite by steady-state single-crystal membrane technique. AIChE Journal, 44(3), 681-694. doi:10.1002/aic.690440316 | es_ES |
dc.description.references | Flaherty, D. W., Uzun, A., & Iglesia, E. (2015). Catalytic Ring Opening of Cycloalkanes on Ir Clusters: Alkyl Substitution Effects on the Structure and Stability of C–C Bond Cleavage Transition States. The Journal of Physical Chemistry C, 119(5), 2597-2613. doi:10.1021/jp511688x | es_ES |
dc.description.references | Hibbitts, D. D., Flaherty, D. W., & Iglesia, E. (2015). Role of Branching on the Rate and Mechanism of C–C Cleavage in Alkanes on Metal Surfaces. ACS Catalysis, 6(1), 469-482. doi:10.1021/acscatal.5b01950 | es_ES |
dc.description.references | Majesté, A., Balcon, S., Guérin, M., Kappenstein, C., & Paál, Z. (1999). Hydrogenolysis of n-Hexane on Al2O3-Supported Ir Catalysts of Various Treatments. Journal of Catalysis, 187(2), 486-492. doi:10.1006/jcat.1999.2621 | es_ES |
dc.description.references | Corma, A., Catlow, C. R. A., & Sastre, G. (1998). Diffusion of Linear and Branched C7 Paraffins in ITQ-1 Zeolite. A Molecular Dynamics Study. The Journal of Physical Chemistry B, 102(37), 7085-7090. doi:10.1021/jp9813084 | es_ES |
dc.description.references | Sastre, G., Catlow, C. R. A., & Corma, A. (2002). Influence of the Intermolecular Interactions on the Mobility of Heptane in the Supercages of MCM-22 Zeolite. A Molecular Dynamics Study. The Journal of Physical Chemistry B, 106(5), 956-962. doi:10.1021/jp013589c | es_ES |
dc.description.references | Shi, H., Gutiérrez, O. Y., Haller, G. L., Mei, D., Rousseau, R., & Lercher, J. A. (2013). Structure sensitivity of hydrogenolytic cleavage of endocyclic and exocyclic C–C bonds in methylcyclohexane over supported iridium particles. Journal of Catalysis, 297, 70-78. doi:10.1016/j.jcat.2012.09.018 | es_ES |