- -

On the way to ovules: The hormonal regulation of ovule development

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

On the way to ovules: The hormonal regulation of ovule development

Show full item record

Barro-Trastoy, D.; Gómez, MD.; Tornero Feliciano, P.; Perez Amador, MA. (2020). On the way to ovules: The hormonal regulation of ovule development. Critical Reviews in Plant Sciences. 39(5):431-456. https://doi.org/10.1080/07352689.2020.1820203

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/166532

Files in this item

Item Metadata

Title: On the way to ovules: The hormonal regulation of ovule development
Author: Barro-Trastoy, Daniela Gómez, María Dolores Tornero Feliciano, Pablo PEREZ AMADOR, MIGUEL ANGEL
UPV Unit: Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes
Issued date:
Abstract:
[EN] This review focuses on the hormonal regulation of ovule development, especially on ovule initiation, patterning, and morphogenesis. Understanding of the genetic and molecular basis of ovule development is essential ...[+]
Subjects: Arabidopsis , Auxins , Brassinosteroids , Cytokinins , Development , Gibberellins , Hormones , Integument , Ovule , Primordia , Regulation
Copyrigths: Reconocimiento - No comercial (by-nc)
Source:
Critical Reviews in Plant Sciences. (issn: 0735-2689 )
DOI: 10.1080/07352689.2020.1820203
Publisher:
Taylor & Francis
Publisher version: https://doi.org/10.1080/07352689.2020.1820203
Project ID:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/BIO2017-83138-R/ES/LAS GIBERELINAS EN EL CONTROL DE LA FORMACION DE OVULOS Y SEMILLAS: DISEÑO DE HERRAMIENTAS PARA LA MEJORA VEGETAL/
Thanks:
This work was supported by the Spanish Ministry for Science and Innovation-FEDER under [grant BIO2017-83138R].
Type: Artículo

References

Aida, M., & Tasaka, M. (2006). Genetic control of shoot organ boundaries. Current Opinion in Plant Biology, 9(1), 72-77. doi:10.1016/j.pbi.2005.11.011

Aida, M., Ishida, T., Fukaki, H., Fujisawa, H., & Tasaka, M. (1997). Genes involved in organ separation in Arabidopsis: an analysis of the cup-shaped cotyledon mutant. The Plant Cell, 9(6), 841-857. doi:10.1105/tpc.9.6.841

Armenta-Medina, A., & Gillmor, C. S. (2019). Genetic, molecular and parent-of-origin regulation of early embryogenesis in flowering plants. Plant Development and Evolution, 497-543. doi:10.1016/bs.ctdb.2018.11.008 [+]
Aida, M., & Tasaka, M. (2006). Genetic control of shoot organ boundaries. Current Opinion in Plant Biology, 9(1), 72-77. doi:10.1016/j.pbi.2005.11.011

Aida, M., Ishida, T., Fukaki, H., Fujisawa, H., & Tasaka, M. (1997). Genes involved in organ separation in Arabidopsis: an analysis of the cup-shaped cotyledon mutant. The Plant Cell, 9(6), 841-857. doi:10.1105/tpc.9.6.841

Armenta-Medina, A., & Gillmor, C. S. (2019). Genetic, molecular and parent-of-origin regulation of early embryogenesis in flowering plants. Plant Development and Evolution, 497-543. doi:10.1016/bs.ctdb.2018.11.008

Azhakanandam, S., Nole-Wilson, S., Bao, F., & Franks, R. G. (2008). SEUSSandAINTEGUMENTAMediate Patterning and Ovule Initiation during Gynoecium Medial Domain Development    . Plant Physiology, 146(3), 1165-1181. doi:10.1104/pp.107.114751

Baker, C. C., Sieber, P., Wellmer, F., & Meyerowitz, E. M. (2005). The early extra petals1 Mutant Uncovers a Role for MicroRNA miR164c in Regulating Petal Number in Arabidopsis. Current Biology, 15(4), 303-315. doi:10.1016/j.cub.2005.02.017

Balasubramanian, S., & Schneitz, K. (2000). NOZZLE regulates proximal-distal pattern formation, cell proliferation and early sporogenesis during ovule development in Arabidopsis thaliana. Development, 127(19), 4227-4238. doi:10.1242/dev.127.19.4227

Balasubramanian, S., & Schneitz, K. (2002). NOZZLE links proximal-distal and adaxial-abaxial pattern formation during ovule development in Arabidopsis thaliana. Development, 129(18), 4291-4300. doi:10.1242/dev.129.18.4291

Bao, F., Azhakanandam, S., & Franks, R. G. (2009). SEUSSandSEUSS-LIKETranscriptional Adaptors Regulate Floral and Embryonic Development in Arabidopsis. Plant Physiology, 152(2), 821-836. doi:10.1104/pp.109.146183

Barro‐Trastoy, D., Carrera, E., Baños, J., Palau‐Rodríguez, J., Ruiz‐Rivero, O., Tornero, P., … Pérez‐Amador, M. A. (2020). Regulation of ovule initiation by gibberellins and brassinosteroids in tomato and Arabidopsis: two plant species, two molecular mechanisms. The Plant Journal, 102(5), 1026-1041. doi:10.1111/tpj.14684

Bartrina, I., Otto, E., Strnad, M., Werner, T., & Schmülling, T. (2011). Cytokinin Regulates the Activity of Reproductive Meristems, Flower Organ Size, Ovule Formation, and Thus Seed Yield in Arabidopsis thaliana      . The Plant Cell, 23(1), 69-80. doi:10.1105/tpc.110.079079

Becker, A. (2020). A molecular update on the origin of the carpel. Current Opinion in Plant Biology, 53, 15-22. doi:10.1016/j.pbi.2019.08.009

Bencivenga, S., Simonini, S., Benková, E., & Colombo, L. (2012). The Transcription Factors BEL1 and SPL Are Required for Cytokinin and Auxin Signaling During Ovule Development in Arabidopsis. The Plant Cell, 24(7), 2886-2897. doi:10.1105/tpc.112.100164

Benková, E., Michniewicz, M., Sauer, M., Teichmann, T., Seifertová, D., Jürgens, G., & Friml, J. (2003). Local, Efflux-Dependent Auxin Gradients as a Common Module for Plant Organ Formation. Cell, 115(5), 591-602. doi:10.1016/s0092-8674(03)00924-3

BERRY, P. M., & SPINK, J. H. (2009). Understanding the effect of a triazole with anti-gibberellin activity on the growth and yield of oilseed rape (Brassica napus). The Journal of Agricultural Science, 147(3), 273-285. doi:10.1017/s0021859609008491

BOUTTIER, C., & MORGAN, D. G. (1992). Ovule Development and Determination of Seed Number Per Pod in Oilseed Rape (Brassica napusL.). Journal of Experimental Botany, 43(5), 709-714. doi:10.1093/jxb/43.5.709

Bowman, J. L., Smyth, D. R., & Meyerowitz, E. M. (1991). Genetic interactions among floral homeotic genes of Arabidopsis. Development, 112(1), 1-20. doi:10.1242/dev.112.1.1

Brambilla, V., Battaglia, R., Colombo, M., Masiero, S., Bencivenga, S., Kater, M. M., & Colombo, L. (2007). Genetic and Molecular Interactions between BELL1 and MADS Box Factors Support Ovule Development inArabidopsis. The Plant Cell, 19(8), 2544-2556. doi:10.1105/tpc.107.051797

Broadhvest, J., Baker, S. C., & Gasser, C. S. (2000). SHORT INTEGUMENTS 2 Promotes Growth During Arabidopsis Reproductive Development. Genetics, 155(2), 899-907. doi:10.1093/genetics/155.2.899

Brumos, J., Robles, L. M., Yun, J., Vu, T. C., Jackson, S., Alonso, J. M., & Stepanova, A. N. (2018). Local Auxin Biosynthesis Is a Key Regulator of Plant Development. Developmental Cell, 47(3), 306-318.e5. doi:10.1016/j.devcel.2018.09.022

Carter, B., Henderson, J. T., Svedin, E., Fiers, M., McCarthy, K., Smith, A., … Ogas, J. (2016). Cross-Talk Between Sporophyte and Gametophyte Generations Is Promoted by CHD3 Chromatin Remodelers in Arabidopsis thaliana. Genetics, 203(2), 817-829. doi:10.1534/genetics.115.180141

Ceccato, L., Masiero, S., Sinha Roy, D., Bencivenga, S., Roig-Villanova, I., Ditengou, F. A., … Colombo, L. (2013). Maternal Control of PIN1 Is Required for Female Gametophyte Development in Arabidopsis. PLoS ONE, 8(6), e66148. doi:10.1371/journal.pone.0066148

Chevalier, D., Batoux, M., Fulton, L., Pfister, K., Yadav, R. K., Schellenberg, M., & Schneitz, K. (2005). STRUBBELIG defines a receptor kinase-mediated signaling pathway regulating organ development in Arabidopsis. Proceedings of the National Academy of Sciences, 102(25), 9074-9079. doi:10.1073/pnas.0503526102

Christensen, C. A., King, E. J., Jordan, J. R., & Drews, G. N. (1997). Megagametogenesis in Arabidopsis wild type and the Gf mutant. Sexual Plant Reproduction, 10(1), 49-64. doi:10.1007/s004970050067

Conner, J., & Liu, Z. (2000). LEUNIG, a putative transcriptional corepressor that regulates AGAMOUS expression during flower development. Proceedings of the National Academy of Sciences, 97(23), 12902-12907. doi:10.1073/pnas.230352397

Cucinotta, M., Colombo, L., & Roig-Villanova, I. (2014). Ovule development, a new model for lateral organ formation. Frontiers in Plant Science, 5. doi:10.3389/fpls.2014.00117

Cucinotta, M., Di Marzo, M., Guazzotti, A., de Folter, S., Kater, M. M., & Colombo, L. (2020). Gynoecium size and ovule number are interconnected traits that impact seed yield. Journal of Experimental Botany, 71(9), 2479-2489. doi:10.1093/jxb/eraa050

Cucinotta, M., Manrique, S., Cuesta, C., Benkova, E., Novak, O., & Colombo, L. (2018). CUP-SHAPED COTYLEDON1 (CUC1) and CUC2 regulate cytokinin homeostasis to determine ovule number in Arabidopsis. Journal of Experimental Botany, 69(21), 5169-5176. doi:10.1093/jxb/ery281

Cucinotta, M., Manrique, S., Guazzotti, A., Quadrelli, N. E., Mendes, M. A., Benkova, E., & Colombo, L. (2016). Cytokinin response factors integrate auxin and cytokinin pathways for female reproductive organ development. Development. doi:10.1242/dev.143545

Davière, J.-M., & Achard, P. (2016). A Pivotal Role of DELLAs in Regulating Multiple Hormone Signals. Molecular Plant, 9(1), 10-20. doi:10.1016/j.molp.2015.09.011

Denay, G., Chahtane, H., Tichtinsky, G., & Parcy, F. (2017). A flower is born: an update on Arabidopsis floral meristem formation. Current Opinion in Plant Biology, 35, 15-22. doi:10.1016/j.pbi.2016.09.003

Elliott, R. C., Betzner, A. S., Huttner, E., Oakes, M. P., Tucker, W. Q., Gerentes, D., … Smyth, D. R. (1996). AINTEGUMENTA, an APETALA2-like gene of Arabidopsis with pleiotropic roles in ovule development and floral organ growth. The Plant Cell, 8(2), 155-168. doi:10.1105/tpc.8.2.155

Endress, P. K. (2011). Angiosperm ovules: diversity, development, evolution. Annals of Botany, 107(9), 1465-1489. doi:10.1093/aob/mcr120

Enugutti, B., & Schneitz, K. (2013). Genetic analysis of ectopic growth suppression during planar growth of integuments mediated by the Arabidopsis AGC protein kinase UNICORN. BMC Plant Biology, 13(1), 2. doi:10.1186/1471-2229-13-2

Enugutti, B., Kirchhelle, C., Oelschner, M., Torres Ruiz, R. A., Schliebner, I., Leister, D., & Schneitz, K. (2012). Regulation of planar growth by the Arabidopsis AGC protein kinase UNICORN. Proceedings of the National Academy of Sciences, 109(37), 15060-15065. doi:10.1073/pnas.1205089109

Erbasol Serbes, I., Palovaara, J., & Groß-Hardt, R. (2019). Development and function of the flowering plant female gametophyte. Plant Development and Evolution, 401-434. doi:10.1016/bs.ctdb.2018.11.016

Eshed, Y., Baum, S. F., Perea, J. V., & Bowman, J. L. (2001). Establishment of polarity in lateral organs of plants. Current Biology, 11(16), 1251-1260. doi:10.1016/s0960-9822(01)00392-x

Favaro, R., Pinyopich, A., Battaglia, R., Kooiker, M., Borghi, L., Ditta, G., … Colombo, L. (2003). MADS-Box Protein Complexes Control Carpel and Ovule Development in Arabidopsis. The Plant Cell, 15(11), 2603-2611. doi:10.1105/tpc.015123

Ferreira, L. G., de Alencar Dusi, D. M., Irsigler, A. S. T., Gomes, A. C. M. M., Mendes, M. A., Colombo, L., & de Campos Carneiro, V. T. (2017). GID1 expression is associated with ovule development of sexual and apomictic plants. Plant Cell Reports, 37(2), 293-306. doi:10.1007/s00299-017-2230-0

Franks, R. G., Wang, C., Levin, J. Z., & Liu, Z. (2002). SEUSS, a member of a novel family of plant regulatory proteins, represses floral homeotic gene expression withLEUNIG. Development, 129(1), 253-263. doi:10.1242/dev.129.1.253

Fridman, Y., & Savaldi-Goldstein, S. (2013). Brassinosteroids in growth control: How, when and where. Plant Science, 209, 24-31. doi:10.1016/j.plantsci.2013.04.002

Friedt, W., Tu, J., & Fu, T. (2018). Academic and Economic Importance of Brassica napus Rapeseed. The Brassica napus Genome, 1-20. doi:10.1007/978-3-319-43694-4_1

Gaiser, J. C., Robinson-Beers, K., & Gasser, C. S. (1995). The Arabidopsis SUPERMAN Gene Mediates Asymmetric Growth of the Outer Integument of Ovules. The Plant Cell, 7(3), 333. doi:10.2307/3869855

Galbiati, F., Sinha Roy, D., Simonini, S., Cucinotta, M., Ceccato, L., Cuesta, C., … Colombo, L. (2013). An integrative model of the control of ovule primordia formation. The Plant Journal, 76(3), 446-455. doi:10.1111/tpj.12309

Gallego-Giraldo, C., Hu, J., Urbez, C., Gomez, M. D., Sun, T., & Perez-Amador, M. A. (2014). Role of the gibberellin receptors GID1 during fruit-set in Arabidopsis. The Plant Journal, 79(6), 1020-1032. doi:10.1111/tpj.12603

Gasser, C. S., & Skinner, D. J. (2019). Development and evolution of the unique ovules of flowering plants. Plant Development and Evolution, 373-399. doi:10.1016/bs.ctdb.2018.10.007

Gifford, M. L., Dean, S., & Ingram, G. C. (2003). TheArabidopsis ACR4gene plays a role in cell layer organisation during ovule integument and sepal margin development. Development, 130(18), 4249-4258. doi:10.1242/dev.00634

Goldental-Cohen, S., Israeli, A., Ori, N., & Yasuor, H. (2017). Auxin Response Dynamics During Wild-Type and entire Flower Development in Tomato. Plant and Cell Physiology, 58(10), 1661-1672. doi:10.1093/pcp/pcx102

Gomez, M. D., Barro-Trastoy, D., Escoms, E., Saura-Sánchez, M., Sánchez, I., Briones-Moreno, A., … Perez-Amador, M. A. (2018). Gibberellins negatively modulate ovule number in plants. Development. doi:10.1242/dev.163865

Gomez, M. D., Barro-Trastoy, D., Fuster-Almunia, C., Tornero, P., Alonso, J. M., & Perez-Amador, M. A. (2020). Gibberellin-mediated RGA-LIKE1 degradation regulates embryo sac development in Arabidopsis. Journal of Experimental Botany, 71(22), 7059-7072. doi:10.1093/jxb/eraa395

Gómez, M. D., Fuster-Almunia, C., Ocaña-Cuesta, J., Alonso, J. M., & Pérez-Amador, M. A. (2019). RGL2 controls flower development, ovule number and fertility in Arabidopsis. Plant Science, 281, 82-92. doi:10.1016/j.plantsci.2019.01.014

Gomez, M. D., Urbez, C., Perez-Amador, M. A., & Carbonell, J. (2011). Characterization of constricted fruit (ctf) Mutant Uncovers a Role for AtMYB117/LOF1 in Ovule and Fruit Development in Arabidopsis thaliana. PLoS ONE, 6(4), e18760. doi:10.1371/journal.pone.0018760

Gomez, M. D., Ventimilla, D., Sacristan, R., & Perez-Amador, M. A. (2016). Gibberellins Regulate Ovule Integument Development by Interfering with the Transcription Factor ATS. Plant Physiology, 172(4), 2403-2415. doi:10.1104/pp.16.01231

Gonçalves, B., Hasson, A., Belcram, K., Cortizo, M., Morin, H., Nikovics, K., … Arnaud, N. (2015). A conserved role forCUP-SHAPED COTYLEDONgenes during ovule development. The Plant Journal, 83(4), 732-742. doi:10.1111/tpj.12923

Grobeta-Hardt, R. (2002). WUSCHEL signaling functions in interregional communication during Arabidopsis ovule development. Genes & Development, 16(9), 1129-1138. doi:10.1101/gad.225202

Hashimoto, K., Miyashima, S., Sato-Nara, K., Yamada, T., & Nakajima, K. (2018). Functionally Diversified Members of the MIR165/6 Gene Family Regulate Ovule Morphogenesis in Arabidopsis thaliana. Plant and Cell Physiology, 59(5), 1017-1026. doi:10.1093/pcp/pcy042

Hauser, B. A., He, J. Q., Park, S. O., & Gasser, C. S. (2000). TSO1 is a novel protein that modulates cytokinesis and cell expansion in Arabidopsis. Development, 127(10), 2219-2226. doi:10.1242/dev.127.10.2219

Hedden, P., & Sponsel, V. (2015). A Century of Gibberellin Research. Journal of Plant Growth Regulation, 34(4), 740-760. doi:10.1007/s00344-015-9546-1

Heisler, M. G., & Byrne, M. E. (2020). Progress in understanding the role of auxin in lateral organ development in plants. Current Opinion in Plant Biology, 53, 73-79. doi:10.1016/j.pbi.2019.10.007

Heisler, M. G., Ohno, C., Das, P., Sieber, P., Reddy, G. V., Long, J. A., & Meyerowitz, E. M. (2005). Patterns of Auxin Transport and Gene Expression during Primordium Development Revealed by Live Imaging of the Arabidopsis Inflorescence Meristem. Current Biology, 15(21), 1899-1911. doi:10.1016/j.cub.2005.09.052

Hibara, K., Takada, S., & Tasaka, M. (2003). CUC1 gene activates the expression of SAM-related genes to induce adventitious shoot formation. The Plant Journal, 36(5), 687-696. doi:10.1046/j.1365-313x.2003.01911.x

Hill, T. A., Broadhvest, J., Kuzoff, R. K., & Gasser, C. S. (2006). Arabidopsis SHORT INTEGUMENTS 2 Is a Mitochondrial DAR GTPase. Genetics, 174(2), 707-718. doi:10.1534/genetics.106.060657

Huang, H.-Y., Jiang, W.-B., Hu, Y.-W., Wu, P., Zhu, J.-Y., Liang, W.-Q., … Lin, W.-H. (2013). BR Signal Influences Arabidopsis Ovule and Seed Number through Regulating Related Genes Expression by BZR1. Molecular Plant, 6(2), 456-469. doi:10.1093/mp/sss070

Hwang, I., Sheen, J., & Müller, B. (2012). Cytokinin Signaling Networks. Annual Review of Plant Biology, 63(1), 353-380. doi:10.1146/annurev-arplant-042811-105503

Ishida, T., Aida, M., Takada, S., & Tasaka, M. (2000). Involvement of CUP-SHAPED COTYLEDON Genes in Gynoecium and Ovule Development in Arabidopsis thaliana. Plant and Cell Physiology, 41(1), 60-67. doi:10.1093/pcp/41.1.60

Jia, D., Chen, L., Yin, G., Yang, X., Gao, Z., Guo, Y., … Tang, W. (2020). Brassinosteroids regulate outer ovule integument growth in part via the control ofINNER NO OUTERby BRASSINOZOLE‐RESISTANT family transcription factors. Journal of Integrative Plant Biology, 62(8), 1093-1111. doi:10.1111/jipb.12915

Jung, J.-H., & Park, C.-M. (2006). MIR166/165 genes exhibit dynamic expression patterns in regulating shoot apical meristem and floral development in Arabidopsis. Planta, 225(6), 1327-1338. doi:10.1007/s00425-006-0439-1

Kelley, D. R., Arreola, A., Gallagher, T. L., & Gasser, C. S. (2012). ETTIN (ARF3) physically interacts with KANADI proteins to form a functional complex essential for integument development and polarity determination in Arabidopsis. Development, 139(6), 1105-1109. doi:10.1242/dev.067918

Kelley, D. R., Skinner, D. J., & Gasser, C. S. (2009). Roles of polarity determinants in ovule development. The Plant Journal, 57(6), 1054-1064. doi:10.1111/j.1365-313x.2008.03752.x

Khan, S. U., Yangmiao, J., Liu, S., Zhang, K., Khan, M. H. U., Zhai, Y., … Zhou, Y. (2019). Genome-wide association studies in the genetic dissection of ovule number, seed number, and seed weight in Brassica napus L. Industrial Crops and Products, 142, 111877. doi:10.1016/j.indcrop.2019.111877

Klucher, K. M., Chow, H., Reiser, L., & Fischer, R. L. (1996). The AINTEGUMENTA gene of Arabidopsis required for ovule and female gametophyte development is related to the floral homeotic gene APETALA2. The Plant Cell, 8(2), 137-153. doi:10.1105/tpc.8.2.137

Krizek, B. A. (1999). Ectopic expression ofAINTEGUMENTA inArabidopsis plants results in increased growth of floral organs. Developmental Genetics, 25(3), 224-236. doi:10.1002/(sici)1520-6408(1999)25:3<224::aid-dvg5>3.0.co;2-y

Krizek, B. A., Blakley, I. C., Ho, Y., Freese, N., & Loraine, A. E. (2020). The Arabidopsis transcription factor AINTEGUMENTA orchestrates patterning genes and auxin signaling in the establishment of floral growth and form. The Plant Journal, 103(2), 752-768. doi:10.1111/tpj.14769

Larsson, E., Roberts, C. J., Claes, A. R., Franks, R. G., & Sundberg, E. (2014). Polar Auxin Transport Is Essential for Medial versus Lateral Tissue Specification and Vascular-Mediated Valve Outgrowth in Arabidopsis Gynoecia. Plant Physiology, 166(4), 1998-2012. doi:10.1104/pp.114.245951

Larsson, E., Vivian-Smith, A., Offringa, R., & Sundberg, E. (2017). Auxin Homeostasis in Arabidopsis Ovules Is Anther-Dependent at Maturation and Changes Dynamically upon Fertilization. Frontiers in Plant Science, 8. doi:10.3389/fpls.2017.01735

Laufs, P., Peaucelle, A., Morin, H., & Traas, J. (2004). MicroRNA regulation of the CUC genes is required for boundary size control in Arabidopsis meristems. Development, 131(17), 4311-4322. doi:10.1242/dev.01320

Lee, D.-K., Geisler, M., & Springer, P. S. (2009). LATERAL ORGAN FUSION1 and LATERAL ORGAN FUSION2function in lateral organ separation and axillary meristem formation in Arabidopsis. Development, 136(14), 2423-2432. doi:10.1242/dev.031971

Leyser, O. (2017). Auxin Signaling. Plant Physiology, 176(1), 465-479. doi:10.1104/pp.17.00765

Li, L., Qin, G., Tsuge, T., Hou, X., Ding, M., Aoyama, T., … Qu, L. (2008). SPOROCYTELESSmodulatesYUCCAexpression to regulate the development of lateral organs in Arabidopsis. New Phytologist, 179(3), 751-764. doi:10.1111/j.1469-8137.2008.02514.x

Liao, S., Wang, L., Li, J., & Ruan, Y.-L. (2020). Cell Wall Invertase Is Essential for Ovule Development through Sugar Signaling Rather Than Provision of Carbon Nutrients. Plant Physiology, 183(3), 1126-1144. doi:10.1104/pp.20.00400

Lieber, D., Lora, J., Schrempp, S., Lenhard, M., & Laux, T. (2011). Arabidopsis WIH1 and WIH2 Genes Act in the Transition from Somatic to Reproductive Cell Fate. Current Biology, 21(12), 1009-1017. doi:10.1016/j.cub.2011.05.015

Lituiev, D. S., Krohn, N. G., Müller, B., Jackson, D., Hellriegel, B., Dresselhaus, T., & Grossniklaus, U. (2013). Theoretical and experimental evidence indicates that there is no detectable auxin gradient in the angiosperm female gametophyte. Development, 140(22), 4544-4553. doi:10.1242/dev.098301

Liu, H.-H., Xiong, F., Duan, C.-Y., Wu, Y.-N., Zhang, Y., & Li, S. (2019). Importin β4 Mediates Nuclear Import of GRF-Interacting Factors to Control Ovule Development in Arabidopsis. Plant Physiology, 179(3), 1080-1092. doi:10.1104/pp.18.01135

Liu, Z., Franks, R. G., & Klink, V. P. (2000). Regulation of Gynoecium Marginal Tissue Formation by LEUNIG and AINTEGUMENTA. The Plant Cell, 12(10), 1879-1891. doi:10.1105/tpc.12.10.1879

Lora, J., Yang, X., & Tucker, M. R. (2019). Establishing a framework for female germline initiation in the plant ovule. Journal of Experimental Botany, 70(11), 2937-2949. doi:10.1093/jxb/erz212

Mallory, A. C., Dugas, D. V., Bartel, D. P., & Bartel, B. (2004). MicroRNA Regulation of NAC-Domain Targets Is Required for Proper Formation and Separation of Adjacent Embryonic, Vegetative, and Floral Organs. Current Biology, 14(12), 1035-1046. doi:10.1016/j.cub.2004.06.022

La Rosa, N. M. -d., Sotillo, B., Miskolczi, P., Gibbs, D. J., Vicente, J., Carbonero, P., … Blazquez, M. A. (2014). Large-Scale Identification of Gibberellin-Related Transcription Factors Defines Group VII ETHYLENE RESPONSE FACTORS as Functional DELLA Partners. PLANT PHYSIOLOGY, 166(2), 1022-1032. doi:10.1104/pp.114.244723

Marsch-Martínez, N., & de Folter, S. (2016). Hormonal control of the development of the gynoecium. Current Opinion in Plant Biology, 29, 104-114. doi:10.1016/j.pbi.2015.12.006

Matilla, A. J. (2019). Seed coat formation: its evolution and regulation. Seed Science Research, 29(4), 215-226. doi:10.1017/s0960258519000254

McAbee, J. M., Hill, T. A., Skinner, D. J., Izhaki, A., Hauser, B. A., Meister, R. J., … Gasser, C. S. (2006). ABERRANT TESTA SHAPEencodes a KANADI family member, linking polarity determination to separation and growth of Arabidopsis ovule integuments. The Plant Journal, 46(3), 522-531. doi:10.1111/j.1365-313x.2006.02717.x

Meister, R. J., Kotow, L. M., and Gasser, C. S. 2002. SUPERMAN attenuates positive INNER NO OUTER autoregulation to maintain polar development of Arabidopsis ovule outer integuments. Development 129:4281–4289.

Mendham, N. J., Shipway, P. A., & Scott, R. K. (1981). The effects of delayed sowing and weather on growth, development and yield of winter oil-seed rape (Brassica napus). The Journal of Agricultural Science, 96(2), 389-416. doi:10.1017/s002185960006617x

Mizukami, Y., & Fischer, R. L. (2000). Plant organ size control: AINTEGUMENTA regulates growth and cell numbers during organogenesis. Proceedings of the National Academy of Sciences, 97(2), 942-947. doi:10.1073/pnas.97.2.942

Modrusan, Z., Reiser, L., Feldmann, K. A., Fischer, R. L., & Haughn, G. W. (1994). Homeotic Transformation of Ovules into Carpel-Like Structures in Arabidopsis. The Plant Cell, 6(3), 333. doi:10.2307/3869754

Nemhauser, J. L., Feldman, L. J., & Zambryski, P. C. (2000). Auxin and ETTIN in Arabidopsis gynoecium morphogenesis. Development, 127(18), 3877-3888. doi:10.1242/dev.127.18.3877

Nikovics, K., Blein, T., Peaucelle, A., Ishida, T., Morin, H., Aida, M., & Laufs, P. (2006). The Balance between theMIR164AandCUC2Genes Controls Leaf Margin Serration inArabidopsis. The Plant Cell, 18(11), 2929-2945. doi:10.1105/tpc.106.045617

Nishimura, C., Ohashi, Y., Sato, S., Kato, T., Tabata, S., & Ueguchi, C. (2004). Histidine Kinase Homologs That Act as Cytokinin Receptors Possess Overlapping Functions in the Regulation of Shoot and Root Growth in Arabidopsis. The Plant Cell, 16(6), 1365-1377. doi:10.1105/tpc.021477

Nole-Wilson, S., & Krizek, B. A. (2006). AINTEGUMENTA Contributes to Organ Polarity and Regulates Growth of Lateral Organs in Combination with YABBY Genes. Plant Physiology, 141(3), 977-987. doi:10.1104/pp.106.076604

Nole-Wilson, S., Azhakanandam, S., & Franks, R. G. (2010). Polar auxin transport together with AINTEGUMENTA and REVOLUTA coordinate early Arabidopsis gynoecium development. Developmental Biology, 346(2), 181-195. doi:10.1016/j.ydbio.2010.07.016

Nole-Wilson, S., Rueschhoff, E. E., Bhatti, H., & Franks, R. G. (2010). Synergistic disruptions in seuss cyp85A2 double mutants reveal a role for brassinolide synthesis during gynoecium and ovule development. BMC Plant Biology, 10(1). doi:10.1186/1471-2229-10-198

Nomura, T., Kushiro, T., Yokota, T., Kamiya, Y., Bishop, G. J., & Yamaguchi, S. (2005). The Last Reaction Producing Brassinolide Is Catalyzed by Cytochrome P-450s, CYP85A3 in Tomato and CYP85A2 in Arabidopsis. Journal of Biological Chemistry, 280(18), 17873-17879. doi:10.1074/jbc.m414592200

Okada, K., Ueda, J., Komaki, M. K., Bell, C. J., & Shimura, Y. (1991). Requirement of the Auxin Polar Transport System in Early Stages of Arabidopsis Floral Bud Formation. The Plant Cell, 3(7), 677. doi:10.2307/3869249

Overvoorde, P., Fukaki, H., & Beeckman, T. (2010). Auxin Control of Root Development. Cold Spring Harbor Perspectives in Biology, 2(6), a001537-a001537. doi:10.1101/cshperspect.a001537

Pajoro, A., Biewers, S., Dougali, E., Leal Valentim, F., Mendes, M. A., Porri, A., … Angenent, G. C. (2014). The (r)evolution of gene regulatory networks controlling Arabidopsis plant reproduction: a two-decade history. Journal of Experimental Botany, 65(17), 4731-4745. doi:10.1093/jxb/eru233

Park, S. O., Zheng, Z., Oppenheimer, D. G., & Hauser, B. A. (2005). ThePRETTY FEW SEEDS2gene encodes anArabidopsishomeodomain protein that regulates ovule development. Development, 132(4), 841-849. doi:10.1242/dev.01654

Pattison, R. J., & Catalá, C. (2012). Evaluating auxin distribution in tomato (Solanum lycopersicum) through an analysis of the PIN and AUX/LAX gene families. The Plant Journal, 70(4), 585-598. doi:10.1111/j.1365-313x.2011.04895.x

Pérez-España, V. H., Sánchez-León, N., & Vielle-Calzada, J.-P. (2011). CYP85A1is required for the initiation of female gametogenesis inArabidopsis thaliana. Plant Signaling & Behavior, 6(3), 321-326. doi:10.4161/psb.6.3.13206

Phillips, A. R., & Evans, M. M. S. (2020). Maternal regulation of seed growth and patterning in flowering plants. Maternal Effect Genes in Development, 257-282. doi:10.1016/bs.ctdb.2019.10.008

Pillitteri, L. J., Bemis, S. M., Shpak, E. D., & Torii, K. U. (2007). Haploinsufficiency after successive loss of signaling reveals a role for ERECTA-family genes in Arabidopsis ovule development. Development, 134(17), 3099-3109. doi:10.1242/dev.004788

Pinto, S. C., Mendes, M. A., Coimbra, S., & Tucker, M. R. (2019). Revisiting the Female Germline and Its Expanding Toolbox. Trends in Plant Science, 24(5), 455-467. doi:10.1016/j.tplants.2019.02.003

Pinyopich, A., Ditta, G. S., Savidge, B., Liljegren, S. J., Baumann, E., Wisman, E., & Yanofsky, M. F. (2003). Assessing the redundancy of MADS-box genes during carpel and ovule development. Nature, 424(6944), 85-88. doi:10.1038/nature01741

Planas-Riverola, A., Gupta, A., Betegón-Putze, I., Bosch, N., Ibañes, M., & Caño-Delgado, A. I. (2019). Brassinosteroid signaling in plant development and adaptation to stress. Development, 146(5). doi:10.1242/dev.151894

Reiser, L., Modrusan, Z., Margossian, L., Samach, A., Ohad, N., Haughn, G. W., & Fischer, R. L. (1995). The BELL1 gene encodes a homeodomain protein involved in pattern formation in the Arabidopsis ovule primordium. Cell, 83(5), 735-742. doi:10.1016/0092-8674(95)90186-8

Reyes-Olalde, J. I., & de Folter, S. (2019). Control of stem cell activity in the carpel margin meristem (CMM) in Arabidopsis. Plant Reproduction, 32(2), 123-136. doi:10.1007/s00497-018-00359-0

Reyes-Olalde, J. I., Zúñiga-Mayo, V. M., Serwatowska, J., Chavez Montes, R. A., Lozano-Sotomayor, P., Herrera-Ubaldo, H., … de Folter, S. (2017). The bHLH transcription factor SPATULA enables cytokinin signaling, and both activate auxin biosynthesis and transport genes at the medial domain of the gynoecium. PLOS Genetics, 13(4), e1006726. doi:10.1371/journal.pgen.1006726

Rhoades, M. W., Reinhart, B. J., Lim, L. P., Burge, C. B., Bartel, B., & Bartel, D. P. (2002). Prediction of Plant MicroRNA Targets. Cell, 110(4), 513-520. doi:10.1016/s0092-8674(02)00863-2

Rizza, A., & Jones, A. M. (2019). The makings of a gradient: spatiotemporal distribution of gibberellins in plant development. Current Opinion in Plant Biology, 47, 9-15. doi:10.1016/j.pbi.2018.08.001

Robinson-Beers, K., Pruitt, R. E., & Gasser, C. S. (1992). Ovule Development in Wild-Type Arabidopsis and Two Female-Sterile Mutants. The Plant Cell, 4(10), 1237. doi:10.2307/3869410

Rodríguez-Cazorla, E., Ortuño-Miquel, S., Candela, H., Bailey-Steinitz, L. J., Yanofsky, M. F., Martínez-Laborda, A., … Vera, A. (2018). Ovule identity mediated by pre-mRNA processing in Arabidopsis. PLOS Genetics, 14(1), e1007182. doi:10.1371/journal.pgen.1007182

Rodríguez‐Cazorla, E., Ripoll, J., Ortuño‐Miquel, S., Martínez‐Laborda, A., & Vera, A. (2020). Dissection of the Arabidopsis HUA‐PEP gene activity reveals that ovule fate specification requires restriction of the floral A‐function. New Phytologist, 227(4), 1222-1234. doi:10.1111/nph.16589

Sauquet, H., von Balthazar, M., Magallón, S., Doyle, J. A., Endress, P. K., Bailes, E. J., … Schönenberger, J. (2017). The ancestral flower of angiosperms and its early diversification. Nature Communications, 8(1). doi:10.1038/ncomms16047

Schauer, S. E., Jacobsen, S. E., Meinke, D. W., & Ray, A. (2002). DICER-LIKE1: blind men and elephants in Arabidopsis development. Trends in Plant Science, 7(11), 487-491. doi:10.1016/s1360-1385(02)02355-5

Schiefthaler, U., Balasubramanian, S., Sieber, P., Chevalier, D., Wisman, E., & Schneitz, K. (1999). Molecular analysis of NOZZLE, a gene involved in pattern formation and early sporogenesis during sex organ development in Arabidopsis thaliana. Proceedings of the National Academy of Sciences, 96(20), 11664-11669. doi:10.1073/pnas.96.20.11664

Schneitz, K., Baker, S. C., Gasser, C. S., & Redweik, A. (1998). Pattern formation and growth during floral organogenesis: HUELLENLOS and AINTEGUMENTA are required for the formation of the proximal region of the ovule primordium in Arabidopsis thaliana. Development, 125(14), 2555-2563. doi:10.1242/dev.125.14.2555

Schneitz, K., Hulskamp, M., & Pruitt, R. E. (1995). Wild-type ovule development in Arabidopsis thaliana: a light microscope study of cleared whole-mount tissue. The Plant Journal, 7(5), 731-749. doi:10.1046/j.1365-313x.1995.07050731.x

Schneitz, K., Hulskamp, M., Kopczak, S. D., & Pruitt, R. E. (1997). Dissection of sexual organ ontogenesis: a genetic analysis of ovule development in Arabidopsis thaliana. Development, 124(7), 1367-1376. doi:10.1242/dev.124.7.1367

Schubert, R., Dobritzsch, S., Gruber, C., Hause, G., Athmer, B., Schreiber, T., … Hause, B. (2019). Tomato MYB21 Acts in Ovules to Mediate Jasmonate-Regulated Fertility. The Plant Cell, 31(5), 1043-1062. doi:10.1105/tpc.18.00978

Shi, J., Zhan, J., Yang, Y., Ye, J., Huang, S., Li, R., … Wang, H. (2015). Linkage and regional association analysis reveal two new tightly-linked major-QTLs for pod number and seed number per pod in rapeseed (Brassica napus L.). Scientific Reports, 5(1). doi:10.1038/srep14481

Shirley, N. J., Aubert, M. K., Wilkinson, L. G., Bird, D. C., Lora, J., Yang, X., & Tucker, M. R. (2019). Translating auxin responses into ovules, seeds and yield: Insight from Arabidopsis and the cereals. Journal of Integrative Plant Biology, 61(3), 310-336. doi:10.1111/jipb.12747

Sieber, P., Gheyselinck, J., Gross-Hardt, R., Laux, T., Grossniklaus, U., & Schneitz, K. (2004). Pattern formation during early ovule development in Arabidopsis thaliana. Developmental Biology, 273(2), 321-334. doi:10.1016/j.ydbio.2004.05.037

Šimášková, M., O’Brien, J. A., Khan, M., Van Noorden, G., Ötvös, K., Vieten, A., … Benková, E. (2015). Cytokinin response factors regulate PIN-FORMED auxin transporters. Nature Communications, 6(1). doi:10.1038/ncomms9717

Simon, M. K., Skinner, D. J., Gallagher, T. L., & Gasser, C. S. (2017). Integument Development in Arabidopsis Depends on Interaction of YABBY Protein INNER NO OUTER with Coactivators and Corepressors. Genetics, 207(4), 1489-1500. doi:10.1534/genetics.117.300140

Simonini, S., & Østergaard, L. (2019). Female reproductive organ formation: A multitasking endeavor. Plant Development and Evolution, 337-371. doi:10.1016/bs.ctdb.2018.10.004

Smaczniak, C., Immink, R. G. H., Angenent, G. C., & Kaufmann, K. (2012). Developmental and evolutionary diversity of plant MADS-domain factors: insights from recent studies. Development, 139(17), 3081-3098. doi:10.1242/dev.074674

Smyth, D. R., Bowman, J. L., & Meyerowitz, E. M. (1990). Early flower development in Arabidopsis. The Plant Cell, 2(8), 755-767. doi:10.1105/tpc.2.8.755

Sohlberg, J. J., Myrenås, M., Kuusk, S., Lagercrantz, U., Kowalczyk, M., Sandberg, G., & Sundberg, E. (2006). STY1regulates auxin homeostasis and affects apical-basal patterning of the Arabidopsis gynoecium. The Plant Journal, 47(1), 112-123. doi:10.1111/j.1365-313x.2006.02775.x

Sun, T. (2011). The Molecular Mechanism and Evolution of the GA–GID1–DELLA Signaling Module in Plants. Current Biology, 21(9), R338-R345. doi:10.1016/j.cub.2011.02.036

Tanaka, H., Watanabe, M., Sasabe, M., Hiroe, T., Tanaka, T., Tsukaya, H., … Machida, Y. (2007). Novel receptor-like kinase ALE2 controls shoot development by specifying epidermis inArabidopsis. Development, 134(9), 1643-1652. doi:10.1242/dev.003533

Thomson, B., & Wellmer, F. (2019). Molecular regulation of flower development. Plant Development and Evolution, 185-210. doi:10.1016/bs.ctdb.2018.11.007

Truernit, E., & Haseloff, J. (2008). Arabidopsis thaliana outer ovule integument morphogenesis: Ectopic expression of KNAT1 reveals a compensation mechanism. BMC Plant Biology, 8(1), 35. doi:10.1186/1471-2229-8-35

Van der Knaap, E., Chakrabarti, M., Chu, Y. H., Clevenger, J. P., Illa-Berenguer, E., Huang, Z., … Wu, S. (2014). What lies beyond the eye: the molecular mechanisms regulating tomato fruit weight and shape. Frontiers in Plant Science, 5. doi:10.3389/fpls.2014.00227

Villanueva, J. M., Broadhvest, J., Hauser, B. A., Meister, R. J., Schneitz, K., & Gasser, C. S. (1999). INNER NO OUTER regulates abaxial- adaxial patterning in Arabidopsis ovules. Genes & Development, 13(23), 3160-3169. doi:10.1101/gad.13.23.3160

Vroemen, C. W., Mordhorst, A. P., Albrecht, C., Kwaaitaal, M. A. C. J., & de Vries, S. C. (2003). The CUP-SHAPED COTYLEDON3 Gene Is Required for Boundary and Shoot Meristem Formation in Arabidopsis. The Plant Cell, 15(7), 1563-1577. doi:10.1105/tpc.012203

Wang, H., Liu, Y., Bruffett, K., Lee, J., Hause, G., Walker, J. C., & Zhang, S. (2008). Haplo-Insufficiency ofMPK3inMPK6Mutant Background Uncovers a Novel Function of These Two MAPKs inArabidopsisOvule Development. The Plant Cell, 20(3), 602-613. doi:10.1105/tpc.108.058032

Wang, Y., & Jiao, Y. (2017). Auxin and above-ground meristems. Journal of Experimental Botany, 69(2), 147-154. doi:10.1093/jxb/erx299

Wei, S.-J., Chai, S., Zhu, R.-M., Duan, C.-Y., Zhang, Y., & Li, S. (2020). HUA ENHANCER1 Mediates Ovule Development. Frontiers in Plant Science, 11. doi:10.3389/fpls.2020.00397

Weijers, D., Nemhauser, J., & Yang, Z. (2018). Auxin: small molecule, big impact. Journal of Experimental Botany, 69(2), 133-136. doi:10.1093/jxb/erx463

Wynn, A. N., Seaman, A. A., Jones, A. L., & Franks, R. G. (2014). Novel functional roles for PERIANTHIA and SEUSS during floral organ identity specification, floral meristem termination, and gynoecial development. Frontiers in Plant Science, 5. doi:10.3389/fpls.2014.00130

Xiao, H., Radovich, C., Welty, N., Hsu, J., Li, D., Meulia, T., & van der Knaap, E. (2009). Integration of tomato reproductive developmental landmarks and expression profiles, and the effect of SUN on fruit shape. BMC Plant Biology, 9(1). doi:10.1186/1471-2229-9-49

Yamada, T., Sasaki, Y., Hashimoto, K., Nakajima, K., & Gasser, C. S. (2015). CORONA, PHABULOSA and PHAVOLUTA collaborate with BELL 1 to confine WUSCHEL expression to the nucellus in Arabidopsis ovules. Development. doi:10.1242/dev.129833

Yamaguchi, N., Wu, M.-F., Winter, C. M., Berns, M. C., Nole-Wilson, S., Yamaguchi, A., … Wagner, D. (2013). A Molecular Framework for Auxin-Mediated Initiation of Flower Primordia. Developmental Cell, 24(3), 271-282. doi:10.1016/j.devcel.2012.12.017

Yang, W.-C., Ye, D., Xu, J., & Sundaresan, V. (1999). The SPOROCYTELESS gene of Arabidopsis is required for initiation of sporogenesis and encodes a novel nuclear protein. Genes & Development, 13(16), 2108-2117. doi:10.1101/gad.13.16.2108

Yuan, J., & Kessler, S. A. (2019). A genome-wide association study reveals a novel regulator of ovule number and fertility in Arabidopsis thaliana. PLOS Genetics, 15(2), e1007934. doi:10.1371/journal.pgen.1007934

Žádníková, P., & Simon, R. (2014). How boundaries control plant development. Current Opinion in Plant Biology, 17, 116-125. doi:10.1016/j.pbi.2013.11.013

Zhou, J.-J., & Luo, J. (2018). The PIN-FORMED Auxin Efflux Carriers in Plants. International Journal of Molecular Sciences, 19(9), 2759. doi:10.3390/ijms19092759

Zuñiga-Mayo, V. M., Baños-Bayardo, C. R., Díaz-Ramírez, D., Marsch-Martínez, N., & de Folter, S. (2018). Conserved and novel responses to cytokinin treatments during flower and fruit development in Brassica napus and Arabidopsis thaliana. Scientific Reports, 8(1). doi:10.1038/s41598-018-25017-3

Zúñiga-Mayo, V. M., Gómez-Felipe, A., Herrera-Ubaldo, H., & de Folter, S. (2019). Gynoecium development: networks in Arabidopsis and beyond. Journal of Experimental Botany, 70(5), 1447-1460. doi:10.1093/jxb/erz026

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record